
V H D L
Coding and Logic Synthesis

with Synopsys |

V H D L
Coding and Logic Synthesis

with Synopsys |

This Page Intentionally Left Blank

V H D L
Coding and Logic Synthesis

with Synopsys |

Weng Fook Lee
Advanced Micro Devices, Inc.

ACADEMIC PRESS
A Harcourt Science and Technology Company

San Diego San Francisco New York Boston London Sydney Tokyo

This book is printed on acid-free paper.

Copyright �9 2000 by Academic Press

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopy, recording, or any information storage and retrieval system, without permission in writing from the
publisher. Requests for permission to make copies of any part of the work should be mailed to the following address:
Permissions Department, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida, 32887-6777.

ACADEMIC PRESS
A Harcourt Science and Technology Company
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
http://www.academicpress.com

Academic Press
Harcourt Place, 32 Jamestown Road, London, NWl 7BY, UK

Library of Congress Catalog Number: 00-103964

ISBN: 0-12-440651-3

Printed in the United States of America
00 01 02 03 04 05 MB 9 8 7 6 5 4 3 2 1

Dedicated to my late father,

the greatest man I have ever known.

This Page Intentionally Left Blank

TABLE OF C O N T E N T S

V H D L C O D I N G

List of Figures

List of Tables

List of Examples

Preface

Acknowledgment

Trademarks

I Introduction
1.1 Conventional D e s i g n - Schematic Capture
1.2 Hardware Description Language
1.3 VHDL Design Structure
1.4 Component Instantiation Within a VHDL Design Structure
1.5 Structural, Behavioral, and Synthesizable VHDL Design Structure

1.5.1 StructuraI VHDL
1.5.2 Behavioral VHDL
1.5.3 RTL Code

1.6 Usage of Library Declarations in VHDL Design Structure

2 VHDL Simulation and Synthesis Flow

3 Synthesizable Code for Basic Logic Components
3.1 AND Logic
3.2 OR Logic

xi

x v

o o

XVII

xix

xxiii

xxiv

3
3
4
4
8

10
11
12
15
17

19

21
21
22

vii

viii TABLE OF CONTENTS

3.3 NOT Logic
3.4 NAND Logic
3.5 NOR Logic
3.6 Tristate Buffer Logic
3.7 Complex Logic Gate
3.8 Latch

3.8.1 Avoiding Latches In Your Code
3.9 Flip-Flop
3.10 Decoder
3.11 Encoder
3.12 Multiplexer
3.13 Priority Encoder
3.14 Memory Cell
3.15 Adder
3.16 Component Inference

4 SignaIVersusVariable
4.1 Variable
4.2 Signal
4.3 When to Use Signal and When to Use Variable
4.4 Usage of Loopback Signal

5 Examples of Complex Synthesizable Code
5.1 Shifter
5.2 Counter
5.3 Memory Module
5.4 Car Traffic Controller

6 Pipeline Microcontroller Synthesizable Design
6.1 Instruction Set Definition
6.2 Architectural Definition
6.3 Pipeline Definition
6.4 Microarchitecture Definition for the Pipeline Microcontroller

6.4.1 Predecode Block
6. 4.2 Decode Block
6. 4.3 Register File Block
6.4.4 Execute Block
6.4.5 Fullchip Microcontroller

24
24
26
27
28
29
30
33
34
36
38
39
42
43
45

47
47
48
52
53

57
57
67
73
81

87
87
88
91
92
94

105
113
121
132

II LOGIC S Y N T H E S I S W I T H SYNOPSYS
7 Timing Considerations in Design

7.1 Setup Timing Violation
7.2 Hold Timing Violation
7.3 Setup/Hold Timing Considerations in Synthesis
7.4 Microarchitectural Tweaks for Fixing Setup Time Violations

7.4.1 Logic Duplication to Generate Independent Paths

147
147
148
149
150
150

TABLE OF CONTENTS i x

7.4.2 Logic Duplication Prior to Selection of LaterArriving Signal 151
7.4.3 Balancing of Logic between Flip-Flops 152
7.4.4 Priority Decoding Versus Multiplex Decoding 153

7.5 Microarchitectural Tweaks for Fixing Hold Time Violations 154
7.6 Asynchronous/False Paths 155
7.7 Multicycle Paths 155

8 VHDL Synthesis with Timing Constraints 157
8.1 Introduction to Design Compiler 157
8.2 Using Design Compiler for Synthesis 158
8.3 Performance Tweaks 161

8.3.1 Compilation With 'map_effort high' Option 162
8.3.2 Group Critical Paths Together and Give Them

a Weight Factor 167
8.3.3 Logical Flattening of a Design 172
8.3.4 Characterizing Submodules 176
8.3.5 Register Balancing 177
8.3.6 Usage of FSM Compiler to Optimize Finite State Machine 183
8.3.7 Choosing High-Speed Implementation for

High-level Functional Module 189
8.3.8 Balancing of Logic Trees with Heavy Loading 189

8.4 Area Optimization in Synthesis Tweaks 192
8.4.1 Do Not Use Combinational Logic as Individual Blocks 193
8.4.2 Do Not Use Glue Logic between Modules 194
8.4.3 se t_max_a rea Attribute 195

8.5 Fixing Hold-Time Violations in Synopsys 195
8.6 Misc Synthesis Commands Generally Used 195
8.7 Top-Down and Bottoms-Up Compilation 225

9 GTECH Instantiation 229

I 0 DesignWare Library 23 I
10.1 Creating Your Own DesignWare Library 235

I I Testability Issues in Synthesis 243
11.1 Multiplexed Flip-Flop Scan Style 244
11.2 Using Synopsys Test Compiler for Scan Insertion 246

12 FPGA Synthesis 253

13 Synthesis Links to Layout 263
13.1 Forward-Annotation 263
13.2 Wireload Models 264
13.3 Floorplanning a Design 266
13.4 Post Layout Optimization 267

14 Design Guideline to Follow for Efficient Synthesis 269

15 Appendix A (STD LOGI C 1164 Library) 271

X TABLE OF CONTENTS

16 Appendix B (Shifter Synthesis Results)

17 Appendix C (Counter Synthesis Results)

18 Appendix D (Pipeline Microcontroller Synthesis Results
Top-Down Compilation)

19 Appendix E (EDIF File of Synthesized Microcontroller
Example from Chapter 6)

20 Appendix F (SDF File from Synthesized Microcontroller
Example of Chapter 6)

Glossary

Bibliography

Index

303

309

313

329

355

385

387

389

LIST OF FIGURES

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1. Diagram Showing a Single Architecture VHDL Design
2. Diagram Showing Multiple Architecture VHDL Design
3. Diagram Showing a Hierarchical Design
4. Diagram Showing a 3 AND gate Component Instantiated Design
5. Figure Showing Schematic for "My Module"
6. Diagram Showing a Genetic HDL Simulation and Synthesis Flow
7. Diagram Showing a Testbench around a VHDL Design
8. Diagram for Synthesized AND Logic
9. Diagram for Synthesized OR Logic
10. Diagram for Synthesized NOT Logic
11. Diagram
12. Diagram
13. Diagram
14. Diagram
15. Diagram
16. Diagram
17. Diagram
18. Diagram
19. Diagram
20. Diagram

for Synthesized NAND Logic Gate
for Synthesized NOR Logic
for Synthesized Tristate Buffer Logic
for Synthesized Complex Logic Gate
for Synthesized Latch
for Synthesized Flip-Flop
for Synthesized Decoder
for Synthesized Encoder
for Synthesized Multiplexer Logic
for Synthesized Priority Encoder

Figure 21. Diagram Showing a Logic Component with Late Arriving
Signal

Figure 22. Diagram for Synthesized Memory Cell Using Flip-Flop
Figure 23. Block Diagram for a Synthesized Adder
Figure 24. Schematic Diagram of an Adder Built of Logic Gates
Figure 25. Timing Diagram Showing Simulation Result of Example 27

(Variable)
Figure 26. Timing Diagram Showing Simulation Results of Example 28

(Signal)

6
7
7
8

11
19
20
22
23
24
25
26
27
29
30
34
36
37
39
41

41
43
44
45

51

52

xi

I I

X I I LIST OF FIGURES

Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.

Design
Figure 41.

Diagram Showing a Loopback Signal
Pin Diagram for 4-Bit Shifter Design
Diagram Showing Flow Chart for Shifter Design
Timing Diagram for Shift Left
Timing Diagram for Shift Right
Timing Diagram for Barrel Shift Right
Timing Diagram for Barrel Shift Left
Pin Diagram for a 4-Bit Counter Design
Timing Diagram Showing Count Up for Counter Design
Timing Diagram Showing Countdown for Counter Design
Pin Diagram for Memory Module
Flow Chart for Reading/Writing for a Memory Module
Timing Waveform for Memory Write to Memory Module Design
Timing Waveform for Memory Read from Memory Module

State Diagram for Car Traffic Controller Module
Figure 42. Timing Diagram Showing Simulation Results of a Car Traffic

Controller
Figure 43. Diagram Showing Interface of Microcontroller
Figure 44. Diagram Showing the Pipeline Stage of the Microcontroller
Figure 45. Instruction Execution in a Pipeline
Figure 46. Microarchitectural Definition for Fullchip Microcontroller
Figure 47. Diagram Showing the Predecode Block Interface Signals
Figure 48. Timing Waveform for Predecode Testbench
Figure 49. Diagram Showing the Interface Signal of Decode Block
Figure 50. Timing Waveform for Decode Block Testbench
Figure 51. Diagram Showing the Interface Signals for the Register File

Block
Figure 52. Timing Diagram Showing the Simulation for the Register

File Testbench
Figure 53. Diagram Showing the Interface Signal of Execute Block
Figure 54. Diagram Showing Interface Signals for Execute Block
Figure 55. Timing Waveform Showing the Testbench for Execute Block
Figure 56. Timing Waveform for Microcontroller Testbench
Figure 57. Diagram Showing Combinational Logic Driving Signal A As

Input to Flip-Hop
Figure 58. Timing Diagram Showing Setup Time On Signal A
Figure 59. Timing Diagram Showing Hold Time On Signal A
Figure 60. Synthesized Circuit for Static Timing Analysis
Figure 61. Diagram Showing Genetic Combinational Logic
Figure 62. Diagram Showing Genetic Combinational Logic with "Logic

Duplication"
Figure 63. Diagram Showing a Genetic Logic Circuit
Figure 64. Diagram Showing a Genetic Logic Circuit with Logic

Duplication for Decoding of Early Arriving Signals
Figure 65. Diagram Showing Genetic Design Utilizing Different Stages of

Decoding

54
59
59
66
66
66
67
68
73
73
74
75
80

80
82

86
89
91
92
93
96

103
105
111

113

120
123
128
130
143

148
148
149
149
151

151
152

152

152

o o o

LIST OF FIGURES X l I I

Figure 66. Diagram Showing Genetic Design Utilizing Different Stages of
Decoding with Logic Balancing

Figure 67. Diagram Showing a Priority Decoding Design
Figure 68. Diagram Showing a Multiplex Decoding Design
Figure 69. Diagram Showing a Generic Design with Hold Time Violation
Figure 70. Diagram Showing a Generic Design with Hold Time Violation

Fixed
Figure 71. Diagram Showing a Design with Multicycle Path
Figure 72. Timing Diagram Showing Input Delay and Output Delay with

Reference to a Virtual Clock
Figure 73. Diagram Showing Multiple Submodules on Module TOP
Figure 74. Diagram Showing a Pipeline Design
Figure 75. Diagram Showing a Nonpartitioned Design
Figure 76. Diagram Showing a Well-Partitioned State Machine Logic and

Random Logic
Figure 77. Diagram Showing
Figure 78. Diagram Showing

After balance_buf fer
Figure 79. Diagram Showing
Figure 80. Diagram Showing
Figure 81. Diagram Showing
Figure 82. Diagram Showing
Figure 83. Diagram Showing
Figure 84. Diagram Showing
Figure 85. Diagram Showing
Figure 86. Diagram Showing

BLOCK2

Synthesized Circuit for ba l ance_buf_en t
Synthesized Circuit for ba l ance_buf_en t

153
153
154
154

155
155

163
176
178
184

184
190

192
an Independent Combinational Logic Block 193
Combinational Logic X, Y and Z Combined 193
Glue Logic Between Module A and Module C 194
RESET as a False Path 195
Multicycle Path 196
Inference of Four AND Gates 214
Grouping of Two AND Gates into BLOCKZ 214
Grouping of AND Gates into BLOCK1 and

215
Figure 87. Diagram Showing Synthesis Results of VHDL Code Using

LOOP AND NEXT s ta tement 218
Figure 88. Diagram Showing a Top-Level Design Containing Five

Submodules 225
Figure 89. Diagram Showing Time Budgeting for TOP-Level Module 227
Figure 90. Diagram Showing GTECH XNOR4 Mapped to Four-Input

XNOR Logic Cell 230
Figure 91. Diagram Showing GTECH XNOR4 Mapped to Two-Input

XNOR Logic Cell and Two-Input XOR Logic Cell 230
Figure 92. Diagram Showing Synthesis/Layout Flow Involving Test Insertion 244
Figure 93. Diagram Showing a Multiplexed Flip-Flop Used As a

Scan-Equivalent Cell 245
Figure 94. Diagram Showing Use of Multiplexed Flip-flop during Scan

Mode and Normal Mode 245
Figure 95. Diagram Showing a Scan Chain for a Design 246
Figure 96. Diagram Showing Flow of Steps for Synthesizing a Design

Into FPGA 254
Figure 97. Diagram Showing Forward-Annotation of Information from

Synthesis to Layout 264
Figure 98. Diagram Showing Back-Annotation of RC Information 266

This Page Intentionally Left Blank

LIST OF TABLES

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

1. Truth Table for "My Module"
2. Karnaugh Map for "My Module"
3. Truth Table for AND Logic Function
4. Truth Table for Or Logic Function
5. Truth Table for a NAND Logic Function
6. Truth Table for a NOR Logic Function
7. Truth Table for Tristate Buffer Logic Function
8. Truth Table for a Complex Logic Gate Function
9. Truth Table for a Decode Logic Function
10. Truth Table for an 8-Bit Input Encoder
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Truth Table for a Multiplexer Logic Function
Truth Table for a Single-Bit Selector Priority Encoder
Truth Table for an Adder Logic Function
Symbols/Keywords Used for Logic Component Inference
Table Showing the Shifting of Data for Different Modes of Shifting
Description of Pins and Descriptions for Shifter
Pin Description for Counter Design
Description of Pins for Memory Module Design
Pin Description of a Car Traffic Controller Module
Description of Microcontroller Instruction Set
Description of Microcontroller Interface Signals

Table 22. Representation of Sixteen Internal Registers for the
Microcontroller Design

Table 23. Description of Predecode Block Interface Signals
Table 24. Description of Decode Block Interface Signals
Table 25. Description of Register File Block Interface Signals
Table 26. Description of Execute Block Interface Signals
Table 27. Description of Adder-Implementation Type

13
17
21
23
25
26
27
28
35
36
38
40
43
46
58
58
67
74
81
87
89

90
94

106
113
121
189

This Page Intentionally Left Blank

LIST OF EXAMPLES

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

1
2
3
4
5
6
7
8
9
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

�9 VHDL Code for Multiple Architecture
�9 VHDL Code for a 3 AND Gate Instantiated Component Design
�9 Structural VHDL Code for "My Module"
�9 Behavioral Code for "My Module"
�9 Descriptive VHDL Code for "My Module"
�9 Using the Conversion Function in Writing Synthesizable VHDL
�9 Example of AND Logic Synthesizable Code
�9 Example of OR Logic Synthesizable Code
�9 Example of NOT Logic Synthesizable Code

Example of NAND Logic Synthesizable Code
Example of NOR Logic Synthesizable Code
Example of Tristate Buffer Logic Synthesizable Code
Example of a Complex Logic Gate Synthesizable Code
Example of Latch Synthesized Code
Example of Code of I F Statement Inferring Latch
Example of Code of I F Statement Without Inferring a Latch
Example of Code of C A S E Statement Inferring a Latch
Example of Code of C A S E Statement Without Inferring a Latch
Example of Flip-Flop Synthesizable Code
Example of Decoder Synthesizable Code
Example of Encoder Synthesizable Code
Example of Multiplexer Logic Synthesizable Code
Example of Priority Encoder Synthesizable Code
Example of Synthesizable Code for a Memory Cell
Example of Adder Synthesizable Code
VHDL Code Showing AND Gate Inference
VHDL Code Showing the Usage of a Variable
VHDL Code Showing the Usage of a Signal

6
8

11
13
15
18
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
38
40
42
43
46
48
49

o o

XVI I

o o o

~lll LIST OF EXAMPLES

Example 29. Testbench for Simulation of Signal and Variable Usage 50
Example 30. VHDL Code Showing the Declaration of a BUFFER Port

and an OUT Port 54
Example 31. Example Showing a Loopback Signal 55
Example 32. Synthesizable VHDL Code for a 4-Bit Shifter 60
Example 33. Testbench for the 4-Bit Shifter Design 61
Example 34. Synthesizable VHDL Code for a 4-Bit Counter Design 68
Example 35. Testbench for 4-Bit Counter Design 69
Example 36. Example of Synthesizable Code for a 1-Kbyte Memory

Module Design 75
Example 37. VHDL Testbench for the Memory Module Design 77
Example 38. Example of Synthesizable VHDL for Car Traffic Controller

Module 82
Example 39. Example of Testbench for Car Traffic Controller Module 84
Example 40. Example of Predecode Block Synthesizable VHDL 96
Example 41. Example of VHDL Code for Testbench to Check for Correct

Functionality 101
Example 42. Example of Decode Block Synthesizable VHDL 106
Example 43. Example of Decode Block Testbench 109
Example 44. Example of Register File Block Synthesizable VHDL 114
Example 45. Example of Register File Synthesizable VHDL 118
Example 46. Example of Execute Block Synthesizable VHDL 123
Example 47. Example of Execute Block Testbench for Functionality Check 128
Example 48. Synthesizable Code of Fullchip Microcontroller 132
Example 49. Example of Microcontroller Testbench 136
Example 50. Synthesizable VHDL Code for a 32-Bit Adder 162
Example 51. Example of a 16-Bit Subtractor 167
Example 52. Example of a 4-Bit Multiplier 172
Example 53. Example of VHDL Code for a 2-Pipe Design 178
Example 54. VHDL Code of an Inverter 190
Example 55. Synthesizable VHDL Code for a 32-Bit Comparator 201
Example 56. VHDL Code for Inference of Four AND Gates Using BLOCK

statements 213
Example 57. Example of VHDL Code Using LOOP Syntax 215
Example 58. Example of VHDL Code Using GENERATE Syntax 216
Example 59. VHDL Example Using LOOP and NEXT 217
Example 60. Design of VHDL Code Consisting of Combinational Feedback

Loop 220
Example 61. Instantiation of a GTECH XNOR4 Component. 221
Example 62. VHDL Showing DesignWare Component Instantiation 231
Example 63. VHDL Code for Instantiation of SRAM Module from

DesignWare DW03 Library 233
Example 64. VHDL Code of an N-Bit Shifter 235
Example 65. VHDL Code to Instantiate MY_DW_shifter 239
Example 66. Examples of Wireload Models 265

PREFACE

In today's world, faster and less costly ASIC chips are being designed at a much
quicker rate than before. This requires that ASIC designers be able to design much
more efficiently than before. Designers are constantly under pressure to come up
with faster performing designs, but with fewer resources.

This has led to the development of many EDA tools that help designers to com-
plete a design in a much shorter time frame. These EDA tools are based on the con-
cept of designing ASIC components utilizing Hardware Description Language
(HDL).

Today, a designer does not need to spend much time manually drawing the cir-
cuitry involved in a design but instead can write synthesizable HDL code. A common
form of HDL code used in the ASIC industry for synthesis is Very High-Speed Inte-
grated Circuit Hardware Description Language (VHDL) and Verilog. This book dis-
cusses only VHDL.

Synthesizable VHDL can be used as a form of input in synthesis tools such as
Synopsys's Design Compiler. The synthesis tool can synthesize the logic circuit of
the design with the functionality described by the VHDL code. This new methodol-
ogy of design is a great asset to designers, as it increases both productivity and effi-
ciency.

This book is divided into two parts. The first deals mainly with VHDL coding.
Chapters 1-6 are included in the first part. In these chapters, the reader will see how
simple and complex designs can be coded into synthesizable VHDL. Testbenches
and timing diagrams are included to allow the reader to better understand the ex-
amples. The contents of this first part of the book will expose the reader to many
examples of synthesizable code writing. In these examples, explanations and guide-
lines are included to give the reader an idea regarding the starting point required to
write synthesizable VHDL code.

xix

X X PREFACE

The examples in Chapter 3 are based on synthesizable code for simple and basic
logic components that we see on a daily basis. Chapter 3 also discusses certain
styling issues that are important for a designer to remember. Issues such as unwanted
latch inference will be discussed in this chapter.

Chapter 4 discusses the usage of signal and variable in VHDL synthesis. Ex-
amples are included to bring the reader through the many stages involved in learning
when to use signal and when to use variable.

Chapter 5 shows more examples of synthesizable VHDL code for complex logic
components (shifter, counter, and memory module). Testbenches to exercise the
examples are also included. Timing waveforms based on simulation results are drawn
and discussed to enable the reader to obtain a better understanding of how each piece
of synthesizable VHDL code translates into logic hardware.

Chapter 6 consists of a full-scale design project of a 3-stage pipeline microcon-
troller. This chapter begins with the definition of an instruction set for the microcon-
troller. This is followed by an architectural and microarchitectural definition of the
microcontroller design.

Chapter 6 also shows the reader how the microcontroller is partitioned into func-
tional blocks. The way these blocks can interface with each other to perform the
instruction set execution is also discussed.

Synthesizable VHDL code for each functional block is then written and explained
using simulation testbenches. Timing diagrams of simulation results are included to
explain each functional block.

The second part of the book, which comprises Chapters 7-14, deals with logic
synthesis using Synopsys's Design Compiler. Timing violations, microarchitectural
tweaks, and synthesis options are all discussed to show the reader how a design that
does not meet specification can be tweaked to obtain optimal results.

Chapter 7 discusses basic timing issues of which a designer should be aware prior
to synthesizing a design. This chapter includes the topics of setup timing, hold tim-
ing, delay calculations, false paths, and multicycle paths. This chapter also discusses
the general microarchitecural tweaks that can be done to obtain better timing per-
formance.

Chapter 8 shows the reader the many different ways to optimize a design with dif-
ferent synthesis options using Synopsys's Design Compiler. Chapter 8 has many
examples that shows the reader the different approaches to tweaking a design that
does not meet timing requirements. Examples of designs that have timing violations
(such as hold and setup violations) are fixed using the Design Compiler.

Chapter 9 discusses usage of GTECH components and how they can be used in
VHDL code.

Chapter 10 discusses DesignWare components and how they can be inferred/
instantiated into VHDL code. This chapter also shows the reader how to create
DesignWare components.

Chapter 11 discusses testability issues in synthesis and Chapter 12 gives an ex-
ample of synthesizing for field programmable gate array (FPGA). Chapter 13 is a
brief discussion of links from synthesis to layout while Chapter 14 provides several
guidelines for a designer to follow when writing synthesizable code.

PREFACE xx i

The many examples in this book, ranging from a simple description of basic logic
components to a complex description of functional blocks within a pipeline micro-
controller, show readers how each design can be transformed into synthesizable
VHDL code. Each complex design is then synthesized and tweaked to obtain optimal
synthesis results.

Upon completing this book, the reader will have a good understanding as to how
designs can be coded into synthesizable VHDL, synthesized using Synopsys's
Design Compiler, and tweaked to meet required specifications.

This book is targeted for engineers and students who want to learn how to write
and synthesize VHDL code.

This Page Intentionally Left Blank

ACKNOWLEDGMENT

This book would not have been possible without a number of people whose help I
truly appreciate. Among them are my AMD colleagues whose constant feedback has
allowed me to improve the contents of this book. Mike Van Buskirk, Colin Bill, Vince
Pitruzella, Brad Potts, Ben Oliver, Joe Kucera, Ed Bautista, Feng Pan, Azrul Halim,
Santosh Yachareni, Chen Tien Min, Jeff Ferris, and Jerry Isaac have been great and
there always to render support throughout the entire process of writing this book.

Special thanks to Sun Chong See, Yu Cheng Chang, Kar Keng Chua and Martin
Wang for their time and effort in reviewing this book. A word of appreciation as well
to Soo Me Goak and Mona Chee, who helped in correcting my many grammatical
errors throughout this book. And of course, a special acknowledgement to Bryn
Ekrood and the staff at Synopsys for their help in reviewing the synthesis portion of
this book, the publishing staff at Academic Press and Dianne Littwin for their
patience and support throughout the entire process of writing this book.

o o o

Y~I(III

TRADEMARKS

Design Compiler, Test Compiler, FSM Compiler, Design Analyzer, DesignWare are
trademarks of Synopsys Inc.
Visual HDL is a trademark of Summit Design Inc.
Autologix is a trademark of Mentor Graphics Inc.
Exemplar is a trademark of Exemplar Logic Inc.
Synplify is a trademark of Synplicity Inc.
Ambit is a trademark of Cadence Inc.
Xilinx FPGA 4000E is a trademark of Xilinx Inc.

xxiv

V H D L

PART I
C O D I N G

This Page Intentionally Left Blank

I N T R O D U C T I O N

I . I C O N V E N T I O N A L DESIGN / S C H E M A T I C C A P T U R E

Since the 1980s, when schematic capture was introduced into the world of VLSI
design, it has been a widely used design format. Today there are still many design
houses in the industry using this concept of design.

In the concept of schematic capture, logic gates that will be used to design a cer-
tain circuit are hand-drawn using a computer-aided design (CAD) tool. Upon com-
pletion of schematics drawing, a database is stored based on the hand-drawn
schematics. A common format used for the database is electronic database inter-
change format (EDIF).

Simulation tools are used to simulate the design based on the database. The
designer determines if the design is funtionally correct based on the simulation
results. If the functionality is wrong, the designer must then edit the hand-drawn
schematics and re-run the simulation. This is performed in a loop until the designer is
satisfied that the design has the right functionality.

Schematic capture was a good design methodology in the 1980s but it failed mis-
erably in the 1990s when the number of logic gates involved in a design increased to
hundreds of thousands. With IC chips becoming more complex by the day and the
number of logic gates increasing tremendously with increased complexity of a
design, schematic capture is becoming more an obstacle than a tool to help the
designer.

Furthermore, in today's technological world, a new IC chip in the market will
become obsolete very quickly. The window allowed for the IC chip to gain in sales
and profits has become smaller. This smaller "market-window" is forcing designers
to design a product for a much shorter time frame. Designers need to work faster and
more efficiently in order to come out with better products in a shorter time frame.

This is where hardware description language enters the scene.

4 CHAPTER I INTRODUCTION

1.2 H A R D W A R E DESCRIPTION L A N G U A G E

With rampant growth in technology, electronic design automation (EDA) software
has been growing at an incredible rate during the past several years. This growth
brings about faster and more efficient ways to design logic IC chips. And this is
accomplished through the usage of HDL (hardware description language).

The most favorable type of HDL used today is very high-speed integrated circuit
hardware description language (VHDL) and Verilog. This book discusses VHDL.

In VHDL design, a designer will code the design in terms of VHDL code as
opposed to the conventional method of schematic capture. This code can then be syn-
thesized using VHDL synthesis tools. The synthesized circuit can be stored in a
netlist database.

Among the tools commonly used for VHDL synthesis are Synopsys's Design
Compiler, Mentor Graphics' Autologix, Exemplar, Synplicity's Synplify, Cadence's
Ambit and many others. This book discusses only the use of Synopsys's Design
Compiler to synthesize and tweak the VHDL code.

1.3 V H D L DESIGN STRUCTURE

Before we proceed fu~her with discussions about VHDL synthesis, it is imperative
to have a basic understanding of VHDL design structure.

A VHDL design consists of three sections. They are the e n t i t y , a r c h i t e c t u r e , and
c o n f i g u r a t i o n :

�9 e n t i t y E the portion that declares the input/output/inout ports to the design;
�9 a r c h i t e c t u r e ~ where the VHDL code is written to describe the internal

architecture of the design; and
�9 c o n f i g u r a t i o n m this portion declares the e n t i t y and a r c h i t e c t u r e for different

submodules within the design.

In general, a VHDL file template looks a lot like this:

LIBRARY <library_name>;
USE <library_name>. <sub_library_ name>.ALL ;
ENTITY <enti ty_name> IS
PORT (
<port_name> : <port_direction> <port_ type>;
<port_name> : <port_direction> <port_type>
END <enti ty_name> ;

ARCHITECTURE <architecture_name> OF <entity_name> IS
SIGNAL <signal_name> : <signal_type> := "<starting_
value> ";

1.3 VHDL DESIGN STRUCTURE

BEGIN
............... your VHDL code
END <architecture_name>;

CONFIGURATION <configuration_name> OF <entity_name> IS
FOR <architecture_name>inputs
...... configuration of components
END FOR;
END <configuration_name>;

Whereby:
1. < l i b r a r y _ n a m e > is the name of library to use. An example is IEEE.
2. <sub_library_name> is the name of the sub_library used. An

example would be s t d _ l o g i c _ l 1 6 4
3. <ent i ty__name> is the name of the entity
4. <por t_name> is the name of ports of a design
5. <port_direction> is IN, OUT, INOUT or BUFFER
6. <port_type> is the type declaration which can be std_logic,

std_logic_vector, bit, bit-vector and others as defined in
library std_logic_l164 fromlEEE

7. <architecture_name> is the name of the architecture
8. <signal_name> is name of a signal
9. <signal_type> is the signal type declaration which can be

s t d _ _ l o g i c , s t d . . . l o g i c . _ v e c t o r , b i t , b i t _ v e c t o r and others
as defined in library s t d _ l o g i c _ l 1 6 4 from IEEE

10. < s t a r t i n g _ _ v a l u e > is the initial value of the signal. This is optional.
I 1. < c o n f i g u r a t i o n . _ n a m e > is the name of the configuration of the design.

For each VHDL design, there is only one entity declaration. There are designs that
can have multiple architecture declarations and multiple configuration declarations.

Most designs consist only of an entity, an architecture and a configuration declara-
tion. Figure 1 is a diagram of the single architecture. This coding style is encouraged as
it is simple and easy to visualize. Furthermore, in many of today's VHDL simulation
and synthesis tools, the configuration declaration is often not necessary if the design
consists only of an architecture declaration without any component instantiations.

For designers who wish to have more control over the form of coding, there can be
multiple architecture declarations for a given entity. See Fig. 2 for the diagram. But
each architecture declaration must have its own corresponding configuration decla-
ration. However multiple architecture declarations are seldom used in synthesizable
VHDL code.

Example 1 shows the entity multiple_arch_ent having two architectural
declarations, mul t ipl e_arch_ent_archl and mul t ipl e_arch_ent_arch2.
For each of these architectural declarations, config_l and config_2 a r e the cor-
responding configuration declarations.

6 CHAPTER I INTRODUCTION

ENTITY

ARCHITECTURE

CONFIGURATION

design module
single architecture

FIGURE I Diagram Showing a Single Architecture VHDL Design.

IEEE library
declaration

E X A M P L E I V H D L Code for Multiple Archi tecture

LIBRAR Y IEEE ;

USE IEEE. std_logic_ll 64 .ALL;

Port declaration as
input/output and
s t d _ l o g i c types

ENTITY mul tipl e_arch_ent IS

PORT (

input : IN std_logic;

output : OUT std_logic

);

END mul tiple_arch_ent ;

First architecture
declaration

Second architecture
declaration

First configuration
declaration

ARCHITECTURE mul tiple_arch_ent_archl OF mul tiple_arch_ent IS

BEGIN

m your code for the architecture

END mul tiple_arch_ent_archl ;

ARCHITECTURE mul tiple_arch_ent_arch2 OF mul tiple_arch_ent IS

BEGIN

m your other code for the architecture

END mul tipl e_arch_en t_arch2 ;

CONFIGURATION config_l OF mul tiple_arch_ent IS

FOR mul tipl e_arch_ent_archl

END FOR;

END config_l ;

1.3 VHDL DESIGN STRUCTURE 7

ENTITY

ARCHITECTURE

CONFIGURATION

design module
multiarchitecture

FIGURE 2 Diagram Showing Multiple Architecture VHDL Design.

CONFIGURATION config_2 OF multiple_arch_ent IS

FOR mul tipl e_arch_en t_arch2

END FOR;

END conf i g_2 ;

Second configuration
declaration

Note:
Hierarchical designs are based on the same VHDL structure, which is composed of
entity, architecture, and configuration. Each submodule in the hierarchy (including
the TOP level design) is represented by an entity, an architecture, and a configura-
tion declaration. The submodules are instantiated into TOP-level VHDL code. If the
submodules consist of even lower level sub-submodules, those sub-submodules
are each represented by an entity, architecture, and a configuration. Each of them
would then be instantiated into the submodule that glues them together.

TOP

D

A B C

FIGURE 3 Diagram Showing a Hierarchical Design.

From Fig. 3, A, B, and C are submodules to D while D and E are submodules to
TOP.

8 CHAPTER I INTRODUCTION

1.4 C O M P O N E N T I N S T A N T I A T I O N W I T H I N A V H D L
DESIGN S T R U C T U R E

For designs with component instantiations, configuration must be declared with
association to each component in the architecture. For the design module of Fig. 4,
Example 2 shows the corresponding VHDL code for the instantiated components.

inputl -
v

input2
r

input3
, T

input4

Design Module

outputl

output2

output3

FIGURE 4 Diagram Showing a 3 AND Gate Component Instantiated Design.

IEEE library
declaration

E X A M P L E 2 V H D L Code for a 3 A N D Gate Instantiated
Component Design

LIBRARY IEEE ;

USE IEEE. std_logi c_ll 64 .ALL;

Port declaration for
input/output and type

ENTITY design_module_ent IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

input3 : IN std_logic;

input4 : IN std_logic;

outputl : OUT std_logic;

output2 : OUT std_logic;

output3 : OUT std_logic

);

END design_modul e_en t;

ARCHITECTURE design_module_arch OF desi gn_modul e_ent IS

1.4 COMPONENT INSTANTIATIONWITHINAVHDL DESIGN STRUCTURE

COMPONENT AND_ga t e_ en t

PORT (

AND_inputl : IN std_logic;

AND_input2 : IN std_logic;

AND_output : OUT std_logic

);

END COMPONENT;

Declaration of usage
of component
AND_ga t e_en t

BEGIN

logic_AND 1 : AND_gate_ent PORT MAP (inputl, input2, outputl) ;

logic_AND_2: AND_gate_ent PORT MAP (input2, input3, output2);

logic_AND_3: AND_gate_ent PORT MAP (input3, input4, output3);

END des i gn_modul e_arch;

Port mapping the
instantiated
components

CONFIGURATION desi gn_modul e_conf i g OF desi gn_modul e_ent IS

FOR design_modul e_arch

FOR logic_AND_l : AND_gate_ent

USE ENTITY WORK. AND_gate_ent (AND_gate_arch) ;

END FOR;

FOR 1 ogi c_AND_2 : AND_ga t e_ en t

USE ENTITY WORK. AND_ga te_ent (AND_ga te_arch) ;

END FOR;

FOR logic_AND_3 : AND_gate_ent

USE ENTITY WORK.AND_gate_ent (AND_gate_arch) ;

END FOR;

END FOR;

END desi gn_modul e_conf i g;

Configuration declara-
tion for the instanti-
ated components

Note: The code from Example 2 assumes the existence of a precompiled AND
gate in the library WORK with the entity name ANDgate__eat : and architecture
n a m e AND_gate_arch.

Steps to precompile an AND gate with entity name AND_gate_ent and archi-
tecture n a m e AND_gate_arch into library WORK.

1. Create a directory WORK and link it to a VHDL library through whatever
VHDL simulation/synthesis tools you are using.

2. Create another directory called SOURCE.

3. Create a file <filename> in the SOURCE directory.
4. In the file <filename>, type the contents:

LIBRARY IEEE;

USE IEEE. std_logic_l164.ALL;

| 0 CHAPTER I INTRODUCTION

ENTITY AND_gate_ent IS

PORT (

AND_inputl �9 IN std_logic;

AND_input2 �9 IN std_logic;

AND_outputl �9 OUT std_logic
);
END AND_ga t e_en t;

ARCHITECTURE AND_gate_arch OF AND_gate_ent IS

BEGIN

outputl <= inputl AND input2;

END AND_ga t e_arch ;

5. Compile the file <filename> into the directory WORK by using the VHDL
library you defined in Step 1.

6. When you have completed Step 1 until Step 5, you will have a VHDL library
defined and link to your directory WORK which contain the precompiled com-
ponents of AND_gate_ent.

7. Readers should also note that the steps needed to define and link VHDL
libraries are different for various tools. The reader should check with the tool's
manual on steps needed for defining and linking VHDL libraries.

A brief explanation on the template from Example 2:

�9 On the first two lines of the code is the declaration of the usage of
std_logic_1164 from the I E E E library.

�9 The entity portion contains the declaration input ports (i ru~u t l , i n p u t 2 ,
input3, input4) and output ports (o u e p u e l , o u e p u e 2 , oueput:3) as
s t : d _ l o g i c type.

�9 The architecture portion contains the component instantiation of three AND
gates, each with entity name A N D _ g a t e _ e n t and architecture name
AND_gate_arch.

�9 The configuration portion contains the configuration declaration of the
instantiated components.

1.5 STRUCTURAL, BEHAVIORAL, AND SYNTHESIZABLEVHDL
DESIGN STRUCTURE

In general, a VHDL design can be categorized into three different groups. Each has
its own distinct characteristics and style of coding. The circuit in Fig. 5 shall be used
as a reference to differentiate the coding style for each of these categories.

1.5 STRUCTURAL, BEHAVIORAL, AND SYNTHESIZABLE VHDL DESIGN STRUCTURE | |

in A > %gnall
in B / ~-------~ ~nal2
in C

in D
~ ~ outE

FIGURE 5 Figure Showing Schematic for"My Module."

1.5.1 Structural V H D L

Structural VHDL is a data type structure that is best described as a netlist of a design
or schematic. It has declarations of all the types of components used in the design and
interconnects to connect all the different components.

EXAMPLE 3 S t ruc tura iVHDL Code f o r " M y Module"

LIBRAR Y IEEE;

USE IEEE. std_logic_ll 64. ALL;

ENTITY structural_code_ent IS

PORT (

inA : IN std_logic;

inB : IN std_l ogi c ;

inC : IN std_l ogi c ;

inD : IN std_logic;

outE : OUT std_logic

);

END s truc t ural_code_en t;

ARCHITECTURE structural_code_arch OF structural_code_ent IS

COMPONENT AND_ga t e_ en t

PORT (

AND inputl : IN std_logic;

AND_input2 : IN std_logic;

AND output : OUT std_logic

);

END COMPONENT;

COMPONENT OR_ga t e_en t

PORT (

OR_inputl : IN std_logic;

OR_input2 : IN std_logic;

OR_output : OUT std_logic

);

END COMPONENT;

J 2 CHAPTER I I N T R O D U C T I O N

COMPONENT NAND_ga t e_en t

PORT (

NAND_inputl : IN std_logic;

NAND_input2 : IN std_logic;

NAND_ou tpu t : OUT s td_l ogi c

);

END COMPONENT;

SIGNAL signall, signal2 : std_logic;

BEGIN

logic_AND: AND_gate_ent PORT MAP (inA, inB, signall);

logic_OR: OR_gate_ent PORT MAP (signall, inC,

signal2) ;

logic_NAND: NAND_gate_ent PORT MAP (signal2, inD,

ou tE) ;

END s tructural_code_arch;

CONFIGURATION structural_code_config OF s tructural_code_ent IS

FOR s tructural_code_arch

FOR logic_AND: AND_gate_ent

USE ENTITY WORK. AND_ga te_en t (AND_ga te_arch) ;

END FOR;

FOR logic_OR: OR_gate_ent

USE ENTITY WORK. OR_gate_ent (OR_gate_arch) ;

END FOR;

FOR 1 ogi c_NAND : NAND_ga t e_en t

USE ENTITY WORK.NAND_gate_ent (NAND_gate_arch) ;

END FOR;

END FOR;

END s tructural_code_conf ig;

Note: The code from Example 3 assumes precompiled AND, OR and N/~D gate in
library w o ~ .

1.5.2 Behavioral V H D L

This type structure describes the design in a behavioral manner, mimicking its per-
formance and functionality. A design coded behaviorally is just a black box. The
code is written in such a way as to generate the specified output signals for a given set
of input signals. This form of coding is nonsynthesizable and is normally used only
for system testing.

Using Fig. 5, a truth table (Table 1) representing the functionality of " ~ ~ o d -
u l e " is created. From this functionality, an output value is mapped to every input
value and the code is then behaviorally coded according to the functionality mapped.

1.5 STRUCTURAL, BEHAVIORAL, AND SYNTHESIZABLE VHDL DESIGN STRUCTURE 13

TABLE I Truth Table for "My Module"

inA inB inC InD si gnal l signal2 outE

0 0 0 0 0 1~.

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

EXAMPLE 4 Behavioral Code for "My Module"

LIBRARY IEEE;

USE IEEE. s td_l ogi c_l 164. ALL;

ENTITY behavi or_en t IS

PORT (

inA : IN std_logic;

inB : IN std_logic;

inC : IN std_logic;

inD : IN std_logic;

outE : OUT std_logic

);

END behavi or_en t;

J 4 CHAPTER I INTRODUCTION

ARCHITECTURE behavior_arch OF behavior_ent IS

BEGIN

outE <= '0' WHEN (((inA = 'I') AND (inB = 'i') AND (inC =

'0') AND (inD = '0'))

OR ((inA = 'I') AND (inB = 'I') AND (inC = '0')

AND (inD = 'I'))

OR ((inA = 'I') AND (inB = 'i') AND (inC = 'i')

AND (inD = '0'))

OR ((inA = 'i') AND (inB = 'i') AND (inC = 'i')

AND (inD = 'i')))

ELSE 'i' WHEN (((inA = '0') AND (inB = '0') AND (inC =

'0') AND (inD = '0'))

OR ((inA = 0') AND (inB = '0') AND (inC = '0')

AND (inm = 'I'))

OR ((inA = 0') AND (inB = '0') AND (inC = 'I')

AND (inD = '0'))

OR ((inA = 0') AND (inB = '0') AND (inC = 'i')

AND (inm = 'i'))

OR ((inA = 0') AND (inB = 'I') AND (inC = '0')

AND (inD = '0'))

OR ((inA = 0') AND (inB = 'I') AND (inC = 0')

AND (inD = 'i'))

OR ((inA = 0') AND (inB = I') AND (inC = i')

AND (inD = '0'))

OR ((inA = 0') AND (inB = 1 ') AND (inC = 1 ')

AND (inD = 'i'))

OR ((inA = i') AND (inB = 0') AND (inC = 0')

AND (inD = '0'))

OR ((inA = 'I') AND (inB = 0') AND (inC = 0')

AND (inD = 'i'))

OR ((inA = 'i') AND (inB = 0') AND (inC = i')

AND (inm = '0'))

OR ((inA = 'I') AND (inB = 0') AND (inC = 'i')

AND (inD = 'i')))

ELSE 'H' WHEN ((inA='X') OR (inB='X') OR (inC='X') OR

(inD= 'X'))

ELSE 'L' WHEN ((inA='U') OR (inB='U') OR (inC='U') OR

(inD='U'))

ELSE 'Z' AFTER 1.5 ns; -- propagation delay is 1.5 ns

This is sensitivity list
for the PROCESS. See
the Note.

PROCESS (inA, inB, inC, inD)

/Vy BEGIN
IF ((inA='U') OR (inB='U') OR (inC='U') OR (inD='U'))

THEN

1.5 STRUCTURAL, BEHAVIORAL, AND SYNTHESIZABLE VHDL DESIGN STRUCTURE I

ASSERT FALSE

REPORT "One of the inputs is at 'U'. Output is

driven as L. "

SEVERITY WARNING;

ELSIE ((inA= ' X ') OR (inB= ' X ') OR (inC= ' X ') OR

(inD= 'X')) THEN

ASSERT FALSE

REPORT "One of the inputs is at 'X'. Output is

driven as H. "

SEVERITY WARNING;

END IF;

END PROCESS;

END behavi or_arch;

Note: Sensitivity list is the list of signals whereby the sequential PROCESS would
be triggered/executed when there is a change in any of the signals listed in the
sensitivity list. Therefore it is important that any signals that are used in the
PROCZSS be specified in the sensitivity list.

1.5.3 RTL Code

This is the most complicated form of coding as it describes a design in a high-level
manner through a subset of VHDL syntax. This form of coding is somewhere
between structural and behavioral code. It is at a higher level of description com-
pared to structural VHDL but at a lower level of description compared to that of
behavioral VHDL.

E X A M P L E 5 Descr ip t i veVHDL Code f o r " M y Module"

LIBRARY IEEE;

USE IEEE. std_l ogi c_l164 . ALL;

IEEE library
declaration

ENTITY descriptive_ent IS

PORT (

inA : IN std_logic;

inB : IN std_logic;

inC : IN std_logic;

inD : IN std_logic;

outE : OUT std_logic

);

END descriptive_ent ;

Port declaration as
input/output and type

16 CHAPTER I I N T R O D U C T I O N

Description of "My
Module" in synthe-
sizable code

ARCHITECTURE descriptive_arch OF descriptive_ent IS

BEGIN

PROCESS (inA, inB, inC, inD)

BEGIN

IF (((inA = '0') AND (inB = '0') AND (inC = 'i')

AND (inD = 'i')) OR

((inA = '0') AND (inB = 'I') AND (inC = 'i')

AND (inD = 'i')) OR

((inA = 'I') AND (inB = '0') AND (inC = 'i')

AND (inD = 'i')) OR

((inA = 'I') AND (inB = 'i') AND (inC = '0')

AND (inD = 'i')) OR

((inA = 'I') AND (inB = 'I') AND (inC = 'i')

AND (inD = 'i'))) THEN

outE <= '0';

ELSE

outE <= 'i';

END IF;

END PROCESS;

END descrip ti ve_arch;

Note: There are many different styles to write RTL code. Example 5 is an exam-
ple of an RTL coding style. However, there are simpler and more efficient styles
to write the code for Example 5. Different designers often have different styles of
coding.

Another style to write the code for Example 5:

PROCESS (inA, inB, inC, inD)

BEGIN

IF ((((inA = 'I') AND (inB = 'i')) OR (inC = 'i')) AND (inD =

' 1 ')) THEN

OutE <= '0';

ELSE

OutE <= 'i';

END IF;

END PROCESS;

Did you notice how this style of coding is similar to the combinational logic gate
diagram of Fig. 5?

By synthesizing Example 5, the same combinational logic gate of Fig. 5 is
obtained.

To confirm that the results obtained from synthesizing Example 5 are syntheti-
cally the most optimum, a Karnaugh Map (Table 2) is generated from Table 1.

1.6 USAGE OF LIBRARY DECLARATIONS IN VHDL DESIGN STRUCTURE | 7

TABLE 2 Karnaugh Map for"My Module"

InA & inB

O0 O1 11 10

inC & inD

O0 1 1 1 1
/ ' A

O1 1 1 [0 ' ~ 1

10 1 1 1 1

Optimized to
NOT (D(AB + C))

Optimized output of the Karnaugh map shows the same result as that of Fig. 5.
In dealing with real designs, the reader needs to concem himself/herself only with

writing synthesizable VHDL code. Synthesis optimizations can be performed in a sort
of "automated way" using synthesis tools such as Synopsys's Design Compiler. Syn-
thesis methods to obtain optimal synthesis results are explained in detail in Chapter 8.

1.6 USAGE OF LIBRARY DECLARATIONS IN VHDL DESIGN
STRUCTURE

You might have already noticed that the earlier examples have the following two
lines of the code at the beginning of the VHDL code.

LIBRAR Y IEEE;

USE IEEE. std_logic_l164 .ALL

These two lines declare the usage of functions and procedures from the library
std_logic_l164.

The library s t d _ l o g i c _ l 1 6 4 also contains declarations for different types used
to declare a port, s i g n a l or var iab l e in VHDL. Several examples are:

�9 B X T - - declaration of this type may only have a value of '0' or ' 1';
�9 a o o 2 e a n - - declaration of this type can only have value of F A L S E or TRUE;

�9 I n t e g e r - - declaration of this type allows an integer value ranging from
negative (231 - 1) tO positive (231 -1) .

�9 S t d _ u 2 o g i e - declarations of this type can have 9 different values; they are
�9 '1' - - forcing logical '1'
�9 '0' - - forcing logical '0'
�9 'H' - - weak '1'
�9 'L' - - weak '0'
�9 'X' - - forcing unknown
�9 'U' - - uninitialized
�9 'Z' - - high impedance
�9 ' - - ' - - don' t care
�9 'W' - - weak unknown

�9 S e d _ l o g i c - this is the resolved version of s e d _ u l o g i c type. This is the
most commonly used type in synthesizable code. It is advisable to the designer

| 8 CHAPTER I INTRODUCTION

to try to use only one type when coding synthesizable VHDL. The usage of
just one type would reduce the necessity of using conversion functions to con-
vert from one type to another before integrating different modules together.

Apart from the library std_logic_l164, std_logic_arith is another com-
monly used I E E E library.

S e d _ l o g i e _ a r i e h contain functions that are very useful in VHDL, especially
when a designer is integrating modules/submodules that have different port/signal
type. In cases like these, conversion functions are needed to convert the port/signal
from one type to another. For example, the function CONV_nVTEGER converts a sig-
nal to type IaV2EGER. Another example is COme_ST,_LOGIC_VECTOR, which con-
verts a signal to type STD_ZOGIC__VECTOR.

Example 6 shows how a design can use the function COmC_ST~_ZOaXC_VgCTOR
to convert a signal " i n t e r n a l " from type IaV2EGER to type S~_ZOGIC_VECTOR.

IEEE library

EXAMPLE 6
able VHDL

Using the Conversion Function in Writing Synthesiz-

LIBRARY IEEE;

~ U S E IEEE. std_logic_ll 64. ALL;

USE IEEE. std_logic_ari th. ALL;

Port declaration as
input/output and port
type

Declaration of
internal as

integer type

Conversion of integer
to 4-bit
s t d _ l o g i c _ v e c t o r

ENTITY convert_ent IS

PORT (

input : IN std_logic_vector (i downto 0);

........ other inputs

output : OUT std_logic_vector(3 downto 0);

. other outputs

);

END convert_en t;

ARCHITECTURE convert_arch OF convert_ent

SIGNAL internal : INTEGER;

BEGIN

PROCESS (. list of sensitivity list)
B E G I N

. VHDL code to assign value to signal internal
END P R O C E S S ;

----4m-output <= CONV_STD_LOGIC_VECTOR (internal, 4) ;

END convert_arch;

To get a better idea of how an I E E E library code looks, you can refer to Appendix
A, which consists of the VHDL code for the library s e d _ 2 o g i e _ _ 1 1 6 4 .

2
V H D L S IMULATION A N D

SYNTHESIS F L O W

Graphical
design input

l
Generated

VHDL

Hand coded
VHDL

VHDL
Testbench

N Synthesis tweaks

Synthesis

VHDL
Simulation

Layout

F IGURE 6 Diagram Showing a Generic HDL Simulation and Synthesis Flow.

The generic HDL simulation and synthesis flow as diagrammed in Fig. 6 is divided
into three major portions.

�9 Cod ing This is the beginning of the flow where a designer writes the code for a
specific design. This code can either be hand-written or tool generated. Several of

19

20 CHAPTER 2 VHDL SIMULATION AND SYNTHESIS FLOW

the more commonly used tools to generate HDL code are Summit's Visual HDL
and Mentor Graphics' Renoir.

�9 S i m u l a t i o n Simulation is performed when the HDL code is completed and the
designer is ready to simulate the design. This portion of the flow concentrates on
checking the functionality of the coded design. During simulation, a common
practice to exercise the functionality of a design is to use a testbench (see Fig. 7).
A testbench is a "wrap-around" of the design whereby input stimulus are injected
into the design while monitoring for expected output waveforms. The simulation
result shows an error in the design if the output signals do not match the expected
waveforms. When this occurs, the designer must then move back to the HDL cod-
ing phase, whereby the code is changed to fix the functional mismatch between the
output signals and the expected waveform. This act of simulation and recoding is
performed in a loop until the design's output signals match the expected wave-
form.

�9 S y n t h e s i s When the designer is satisfied with the design and has completed sim-
ulation, the next step would be to synthesize the design. Synthesis is also iterated
in a loop until the synthesized design meets certain design specifications. Several
of the more common criteria to be evaluated are performance and area utilization.
If these criteria are not met, the synthesis tool can be used to perform more opti-
mization on the synthesized database. If upon optimization, the design still does
not meet the mentioned criteria, the microarchitecture implementation of the
design must be changed. The designer will then proceed to recode the HDL. When
constraints are met, the synthesized database and timing requirement are passed
over to layout.

stimulus

VHDL Design

signals

VHDL Testbench

FIGURE 7 Diagram Showing a Testbench around a VHDL Design.

3
i

S Y N T H E S I Z A B L E C O D E FOR BASIC
LOGIC C O M P O N E N T S

The RTL synthesizable code is written using a simple high-level descriptive manner
of the design's functionality. The following examples are synthesizable code for very
basic logic components. Most of these basic logic components, such as AND gate,
OR gate and NOT gate can be coded in VHDL by using VHDL keywords such as
AND, OR, NOT and others. The synthesis tool can recognize these keywords and map
them to logic gates. However as a start to writing synthesizable VHDL code, these
basic logic components are coded in RTL form to give the reader a basic idea of how
synthesizable code may look.

3.1 A N D L O G I C

To begin coding an AND logic, first generate a truth table for the logic.

TABLE 3 Truth Table for A N D Logic Function

Inpu t i Inpu t 2 ou tpu t I

0 0 0

0 1 0

1 0 0

1 1 1

2 1

22 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

E X A M P L E 7 Example of A N D Logic Synthesizable Code

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

ENTITY and_ent IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

outputl : OUT std_logic

);

END and_en t;

ARCHITECTURE and_arch OF and_ent IS

BEGIN

PROCESS (inputl, input2)

BEGIN

IF ((inputl = 'I') AND (input2 = 'i')) THEN

outputl <= 'i';

ELSE

outputl <= '0';

END IF;

END PROCESS;

END and_arch;

Notice that the outputl value assignment is based on the truth table (Table 3) gener-
ated earlier for the AND logic. An easier way to code this would be to use the keyword
A.~D" Outputl <= inputl AND input2;

input2inputl ~ outputl

FIGURE 8 Diagram for Synthesized AND Logic.

3.2 O R L O G I C

For an OR logic, the output is a logical '1' if any one of the inputs has a logical '1'
(see Table 4, the truth table). This feature of OR logic can be directly coded into
VHDL to synthesize an OR logic as shown in Example 8.

3.2 OR LOGIC 23

TABLE 4 Truth Table for OR Logic Function

Inpu t i Inpu t 2 Ou tpu t I

0 0 0

0 1 1

1 0 1

1 1 1

EXAMPLE 8 Example of OR Logic Synthesizable Code

LIBRARY IEEE ;

USE IEEE. std_logic_l164. ALL;

ENTITY or_ent IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

outputl : OUT std_logic

);

END or_ent ;

ARCHITECTURE or_arch OF or_ent IS

BEGIN

PROCESS (inputl, input2)

BEGIN

IF ((inputl = 'i') OR (input2 = 'i')) THEN

outputl <= 'i';

ELSE

outputl <= '0';

END IF;

END PROCESS;

END or_arch;

Describing the func-
tion of an OR logic
whereby if any of the
input has a logical '1',
the output is assigned
to a logical' I' as well.
An easier way to code
this would be to use
the keyword o~
outputl <= inputl

OR input2;

inputl

input2
outputl

F I G U R E 9 Diagram for Synthesized OR Logic.

24 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

3.3 N O T L O G I C

The NOT logic with the output always at an opposite logical state to the input is eas-
ily described as RTL code in Example 9. See Figure 10 for the synthesized NOT
logic diagram.

E X A M P L E 9 Example of N O T Logic Synthesizable Code

LIBRARY IEEE;

USE IEEE. std_Iogic_II64.ALL;

Description to invert
the input to generate
the output. An easier
way is to use the key-
word NOT.
outputl <= NOT

(inputl) ;

ENTITY not_ent IS

PORT (

inputl : IN std_logic;

outputl : OUT std_logic

);

END no t_en t;

ARCHITECTURE no t_arch OF no t_en t IS

BEGIN

PROCESS (inpu tl)

BEGIN

IF (inputl = 'I') THEN

outputl <= '0';

ELSE

outputl <= 'i';

END IF;

END PROCESS;

END no t_arch;

inputl ~ ~ outputl

FIGURE I 0 Diagram for Synthesized NOT Logic.

3.4 N A N D L O G I C

A NAND logic functions like an AND logic connected to a NOT logic. Example 10
describes the results of the truth table (Table 5) for the NAND logic.

For an AND logic, the output is a logical '1' when all the inputs are at logical '1'.
However for NAND logic, the output is at a logical '0' if all the inputs are at a logical' 1'.

3.4 NAND LOGIC 2 5

TABLE 5 Truth Table for a N A N D Logic Function

Inpu t I Inpu t 2 ou tpu t i

0 0 1

0 1 1

1 0 1

1 1 0

E X A M P L E 10 Example of N A N D Logic Synthesizable Code

LIBRARY IEEE;

USE IEEE. std_logic_l164 . ALL;

ENTITY nand_en t IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

outputl : OUT std_logic

);

END nand_en t;

ARCHITECTURE nand_arch OF nand_ent IS

BEGIN

PROCESS (inputl, input2)

BEGIN

IF ((inputl = 'i') AND (input2 = 'i')) THEN

outputl <= '0';

ELSE

outputl <= 'i';

END IF;

END PROCESS;

END nand_arch ;

E> input2
outputl

The logic values driven
by the output of the

logic are directly
opposite to that of the

logic.An easier
way to code this
would be:
outputl <- NOT

(in~utl AND

input2) ;

FIGURE I I Diagram for Synthesized NAND Logic Gate.

26 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

3.5 N O R LOGIC

Similar to the NAND logic, which is the logical opposite of the AND logic, the NOR
logic is the logical opposite of the OR logic (see Table 6).

TABLE 6 Truth Table for a NOR Logic Function

Input I input2 Output I

0 0 1

0 1 0

1 0 0

1 1 0

E X A M P L E I I Example of N O R Logic Synthesizable Code

LIBRARY IEEE;

USE IEEE. std_logic_l164 . ALL;

The logic values driven
by the output are
directly opposite to
that of the OR logic. By
using the keyword on
output / <m

(iaput l OR
input2) I

ENTITY nor_ent IS

PORT (

inputl : IN std_logic;

input2 IN std_logic;

outputl : OUT std_logic

) ; END nor_ent;

ARCHITECTURE nor_arch OF nor_ent IS

BEGIN

PROCESS (inputl, input2)

BEGIN

IF ((inputl = 'i ') OR (input2 = 'i ')) THEN

~_ outputl <= '0';

ELSE

outputl <= 'i';

END IF;

END PROCESS;

END nor_arch;

inputl ~ outputl
input2

FIGURE 12 Diagram for Synthesized NOR Logic.

3.6 TRISTATE BUFFER LOGIC 27

3.6 TR ISTATE BUFFER L O G I C

A tristate buffer is used within designs that consist of tristate buses (see Table 7).
When the selector pin of a tristate buffer is at a logical ' 1', the output will drive a log-
ical equivalent of the input. If the selector pin is a logical '0', the output is high
impedance.

TABLE 7 Truth Table for Tristate Buffer Logic Function

input selector output

0 0 Z

0 1 0

1 0 Z

1 1 1

E X A M P L E 12 Example of Tristate Buffer Logic Synthesizable Code

LIBRAR Y IEEE;

USE IEEE. std logic_l164.ALL;

ENTITY tristate_ent IS

PORT (

inputl : IN std_logic;

selector : IN std_logic;

outputl : OUT std_logic

);

END tristate_ent ;

ARCHITECTURE tristate_arch OF tristate_ent IS

BEGIN

PROCESS (inputl , selector)

BEGIN

IF (selector = 'I ') THEN

outputl <= inputl ;

ELSE

outputl <= ' Z ' ;

END IF;

END PROCESS;

END tristate__arch;

selector
inputl ~ outputl

FIGURE 13 Diagram for Synthesized Tristate Buffer Logic.

Description of tristate
buffer where inputl
is driven at outputl
when selector is at
logical' I '.

28 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

3.7 C O M P L E X LOGIC GATE

To write the code for a complex logic gate, it is important to know the functionality of
the complex gate. This can be achieved by using a truth table to map the output for all
possible logical input. Once the truth table is defined, the code can then be written to
describe the output of the complex gate based on a given set of input patterns.

Truth table (Table 8) shows the functionality of a complex gate. From this table,
the RTL VHDL code is written as shown in Example 13.

TABLE 8 Truth Table for a Complex Logic Gate Function

input I input2 input 3 output I

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Description of
functionality of the
complex logic gate

EXAMPLE 13 Example of a Complex Logic Gate Synthesizable Code

LIBRARY IEEE;

USE IEEE. std_logic_l164 .ALL;

ENTITY compl ex_en t IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

input3 : IN std_logic;

outputl : OUT std_logic

);

END compl ex_en t;

ARCHITECTURE compl ex_arch OF compl ex_en t IS

BEGIN

PROCESS (inputl, input2, input3)

BEGIN

IF (input3 = 'i ') THEN

outputl <= 'i';

ELSIF (input3 = '0') THEN

IF ((inputl = 'i') AND (input2 = 'i')) THEN

outputl <= 'I';

3.8 lATCH 29

inputl~~
input2~
input3

outputl

F I G U R E 14 Diagram for Synthesized Complex Logic Gate.

ELSE

outputl <= '0';

END IF;

ELSE

outputl ~= '0';

END IF;

END PROCESS;

END compl ex_arch;

Note: A simpler way to write this code would be to use the keywords AND and OR:

Outputl <= ((inputl AND input2) OR (input3)) ;

3.8 LATCH

A latch allows the input data to be passed on to the output whenever the clock is at a
logical '1'. However, the last value at the output of the latch is kept throughout the
entire period of the clock when low.

EXAMPLE 14 Example of Latch Synthesized Code

LIBRARY IEEE;

USE IEEE. s td_l ogi c_l 164. ALL;

ENTITY latch_ent IS

PORT (

data_in : IN std_logic;

clock : IN std_logic;

data_out : OUT std_logic

);

END latch_ent;

ARCHITECTURE latch_arch OF latch_ent IS

BEGIN

3 0 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

data_in

clock

D Q

CLK QN

data_out

FIGURE 15 Diagram for Synthesized Latch.

Clock is used to latch
in the input data.
When being synthe-
sized, the term
clock = ' 1 ' will
allow the synthesis
tool to know that a
latch is required.

PROCESS (da ta_in, clock)

BEGIN

IF (clock = 'i') THEN

data_out <= data_in;

END IF;

END PROCESS;

END la tch_arch;

3.8. I Avoiding Latches in Your Code

Many designers who are learning to code synthesizable VHDL very often find that their
designs have unwanted latches. These latches are automatically inferred by a synthesis
tool into the design if a designer misses several important structures in the code.

Latch inference occurs when a designer has written VHDL code that does not
have complete coverage. For example, when using an z~" statement that does not
cover all possible logical combinations, latches will be inferred.

E X A M P L E 15 Example of Code of zF S t a t e m e n t Inferr ing Latch

LIBRAR Y IEEE;

USE IEEE. std_logic_l164. ALL;

ENTITY ifwl_ent IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

input3 : IN std_logic;

input4 : IN std_logic;

selector : IN std_logic_vector (I downto 0);

outputl : OUT std_logic

);

END ifwl_ent;

3.8 LATCH 31

ARCHITECTURE i fwl_arch OF i fwl_en t IS

SIGNAL internal : std_logic := '0 ';

BEGIN

PROCESS (inputl, input2, input3, input4, selector)

BEGIN

IF (selector = "00") THEN

internal <= inputl ;

ELSIF (selector = "01") THEN

internal <= input2;

ELSIF (selector = "I0") THEN

internal <= input3;

END IF;

END PROCESS;

outputl <= internal;

END i fwl_arch ;

There is no complete
coverage of possible
selector combinations.
Therefore latch will
be inferred.

E X A M P L E 16 Example of Code of xz, S t a t e m e n t w i thout
Inferring a Latch

LIBRARY IEEE;

USE IEEE. std_logic_l164 .ALL;

ENTITY i fwol_en t IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

input3 : IN std_logic;

input4 : IN std_logic;

selector : IN std_logic_vector (i downto 0);

outputl : OUT std_logic

);

END i fwol_en t;

ARCHITECTURE i fwol_arch OF i fwol_en t IS

SIGNAL internal : std_logic := '0 ';

BEGIN

PROCESS (inputl, input2, input3, input4, selector)

BEGIN

IF (selector = "00") THEN

internal <= inputl ;

ELSIF (selector = "01") THEN

internal <= input2;

ELSIF (selector = "i0") THEN

internal <= input3;

ELSIF (selector = "Ii") THEN

All possible combina-
tions of selector are
identified. No latch
will be inferred in
this code.

32 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

internal <= input4;

END IF;

END PROCESS;

outputl <= internal;

END i fwol_arch;

Latch inference also occurs when a designer uses a CASE statement but does not
cover all the possible logical conditions of the CAS~.

Not all possible casz
conditions are speci-
fied. As such a latch is
inferred to store the
previous value of
out:put:/.

E X A M P L E 17
a Latch

E x a m p l e of C o d e of CASE S t a t e m e n t In ferr ing

LIBRARY IEEE;

USE IEEE. std_logic_l164 . ALL;

ENTITY casewl_ent IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

input3 : IN std_logic;

input4 : IN std_logic;

selector : IN std_logic_vector (2 downto 0);

outputl : OUT std_logic

);

END casewl_en t;

ARCHITECTURE casewl_arch OF casewl_ent IS

BEGIN

PROCESS (inputl, input2, input3, input4, selector)

BEGIN

CASE selector IS

WHEN "000" =>

outputl <= inputl ;

~_ WHEN "001 " =>

outputl <= input2;

WHEN "010" =>

outputl <= input3;

WHEN OTHERS =>

NULL;

END CASE;

END PROCESS;

END casewl_arch;

3.9 FLIP-FLOP 33

E X A M P L E 18 E x a m p l e of C o d e of CASE S t a t e m e n t w i t h o u t
Inferring a Latch

LIBRARY IEEE;

USE IEEE. s td_l ogi c_l 164. ALL;

ENTITY casewol_ent IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

input3 : IN std_logic;

input4 : IN std_logic;

selector : IN std_logic_vector (2 downto 0);

outputl : OUT std_logic

);

END casewol_en t;

ARCHITECTURE casewol_arch OF casewol_ent IS

BEGIN

PROCESS (inputl, input2, input3, input4, selector)

BEGIN

CASE selector IS

WHEN "000" =>

outputl <= inputl ;

WHEN "001 " =>

outputl <= input2;

WHEN "010" =>

outputl <= input3;

WHEN "011" =>

outputl <= input4;

WHEN OTHERS =>

Outputl <= '0';

END CASE;

END PROCESS;

END casewo!_arch;

Apart from using full coverage in the IF statement or CASE statement to avoid infer-
ence of latches, the designer can also assign default values to a signal to ensure that
no latch is inferred. However, using full coverage of IF~CASE statements is a good
practice to follow in VHDL coding.

All possible conditions
for the CASE state-
ment are specified.
Thus the synthesized
circuit is purely logical
and no latch is
inferred.

3.9 F L I P - F L O P

Flip-flop is similar to a latch except that a flip-flop only latches in the input when the
clock transitions from a low to high (positive edge triggered flip-flop) or from high
to low (negative edge triggered flip-flop). See Fig. 16 for a diagram of synthesized
flip-flop.

34 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

data_in

clock

D Q

>CLK QN

data_out

FIGURE 16 Diagram for Synthesized Flip-Hop.

Indication of c lock
transition from logic
'0' to logic '1 '. If nega-
tive edge is required,
simply use -c lock -
' 0 ' a n d c l o c k

w ~ .

E X A M P L E 19 E x a m p l e of F l ip-F lop Synthes izab le C o d e

LIBRARY IEEE ;

USE IEEE. std_logic_l164. ALL;

ENTITY fl op_en t IS

PORT (

data_in : IN std_logic;

clock : IN std_logic;

data_out : OUT std_logic

);

END flop_ en t;

ARCHITECTURE fl op_arch OF fl op_en t IS

BEGIN

PROCESS (da ta_in, clock)

BEGIN

IF (clock = 'i' and clock'EVENT) THEN

data_out <= data_in;

END IF;

END PROCESS;

END f l op_arch ;

3.10 D E C O D E R

The truth table for a decoder with 3 inputs and 8 outputs is created as shown in Table 9.
The code is then written to describe the output results of the truth table. See Fig. 17
for a synthesized decoder diagram.

3.10 DECODER 35

TABLE 9 TruthTable for a Decode Logic Function

input (2) input (I) input (0) Output (7 downto O)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

00000001

00000010

00000100

00001000

00010000

00100000

01000000

10(0)0(0)0

E X A M P L E 20 Example of Decoder Synthesizable Code

LIBRAR Y IEEE;

USE IEEE. std_logic_l164 . ALL;

ENTITY decoder_ent IS

PORT (

input : IN std_logic_vector (2 downto 0);

output : OUT std_logic_vector (7 downto O)

);

END decoder_en t;

ARCHITECTURE decoder_arch OF decoder_ent IS

BEGIN

PROCESS (input)

BEGIN

CASE input IS

WHEN "000 " =>

output <= "00000001";

WHEN "001 " =>

output <= "00000010";

WHEN "010" =>

output <= "00000100";

WHEN "011 " =>

output <= "00001000";

WHEN "100" =>

output <= "00010000";

WHEN "i01" =>

output <= "00100000";

WHEN "ii0" =>

output <= "01000000";

Assignment value for
each combination of
input

36 CHAPTER 3 SYNTHESlZABLE CODE FOR BASIC LOGIC COMPONENTS

input(0)

input(l)

input(2)

DO

D1

D2

O0

Ol

02

03

04

05

06

07

ou tpu t (0)

ou tpu t (1)

output (2)

output (3)

output (4)

output (5)

output (6)

ou tpu t (7)

FIGURE 17 Diagram for Synthesized Decoder.

WHEN "III" =>

output ~= "i0000000";

WHEN OTHERS =>

NULL;

END CASE;

END PROCESS;

END decoder_arch;

3.11 E N C O D E R

An encoder has the opposite functionality of a decoder. For an encoder with 2 N input,
it would encode the input into an N-bit output. For example, an 8-bit input encoder
will have 3 output bits. See Table 10 and Fig. 18.

TABLE 10 TruthTable for an 8-Bit Input Encoder

input (7 dowato O) output (2) output (I) OU tpu t (0)

oooooool o o

oooooolo o o

oooooloo o 1

oooolooo o 1

OOOLOOOO 1 o

OOLOOOOO 1 o

OlOO(O)o 1 1

lOO(Ogg)o 1 1
i i , i

EXAMPLE 21 Example of Encoder Synthesizable Code

LIBRAR Y IEEE ;

USE IEEE. std_logic_l164 .ALL;

3.11 E N C O D E R 3 7

ENTITY encoder_en t IS

PORT (

input : IN std_logic_vector (7 downto 0);

output : OUT std_logic_vector (2 downto O)

);

END encoder_en t;

ARCHITECTURE encoder_arch OF encoder_ent IS

BEGIN

PROCESS (input)

BEGIN

IF (input = "00000001") THEN

output <= "000";

ELSIF (input = "00000010") THEN

output <= "001";

ELSIF (input = "00000100") THEN

output <= "010 ";

ELSIF (input = "00001000") THEN

output <= "011";

ELSIF (input = "00010000") THEN

output <= "100";

ELSIF (input = "00100000") THEN

output <= "101";

ELSIF (input = "01000000") THEN

output <= "110";

ELSIF (input = "i0000000") THEN

output <= "iii";

ELSE

Output <= "000";

END IF;

END PROCESS;

END encoder_arch ;

For each input
stimulus, a set of
output patterns is
assigned to the output.

input(0)

input(1)

input(2)

input(3)

input(4)

input(5)

input(6)

input(7)

DO

D1

D2

D3

D4

D5

D6

D7

O0

Ol

02

output (0)

output (1)

output (2)

F IGURE 18 Diagram for Synthesized Encoder.

38 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

3.12 M U L T I P L E X E R

Multiplexers can range from 2 to 4 to 8 to 16 inputs and so on. In general, for a 2 N
input multiplexer, an N-bits-wide selector is needed. The selector field is used as a
mechanism to select the input to be directed to the output of the multiplexer (see
Table 11 and Fig. 19).

For a 4-input multiplexer, a 2-bits selector field is required.

TABLE I I TruthTable for a Multiplexer Logic Function

selector Outputl

00 Input 1

01 Input2

10 Input3

11 Input4

CASE statement to
describe output selec-
tions for different
selector values.

E X A M P L E 22 Example of Mult iplexer Logic Synthesizable Code

LIBRARY IEEE;

USE IEEE. std_logic_ll 64 .ALL;

ENTITY mux_en t IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

input3 : IN std_logic;

input4 : IN std_logic;

selector : IN std_logic_vector (i downto 0);

outputl : OUT std_logic

);

END mux_en t;

ARCHITECTURE mux_arch OF mux_ent IS

BEGIN

PROCESS (inputl, input2, input3, input4, selector)

BEGIN

CASE selector IS

WHEN " 0 0 " =>

outputl < = inputl ;

WHEN "01 " =>

outputl <= input2;

WHEN "10" =>

outputl <= input3;

3.13 PRIORITY ENCODER 3 9

inpu t______!l

input2

input3

input4
/

selector

selector(l)

outputl

FIGURE 19 Diagram for Synthesized Multiplexer Logic.

WHEN "ii" =>

outputl <= input4;

WHEN OTHERS =>

NULL;

END CASE;

END PROCESS;

END mux_arch ;

If an 8-bit input multiplexer is needed, the selector bits are enlarged to 3 bits
(2 3 = 8). The c a s z statement in the VHDL code is also enlarged to cover all the pos-
sible logical combinations involving the 3-bit selector field.

The reader must be aware that when using large/wide multiplexers, Design Com-
piler can sometimes fail to translate VHDL code into multiplexers. Design Compiler
would instead build the logic using combinational logic gates. In order to ensure that
Design Compiler is able to synthesize a large/wide multiplexer, it is advisable for the
designer to use GTECH components for these large/wide multiplexers. The GTECH
components are technology independent but functionally accurate components that
are mapped into logic gates by Design Compiler. If the equivalent logic gates do not
exist in the synthesis library, then Design Compiler will use existing logic gates in
the library to build a logic component with the same function. The GTECH compo-
nents are explained in detail in Chapter 9.

3.13 PRIORITY ENCODER

A priority encoder can be coded using IF statement with the first condition in the IF
statement the signal with the highest priority.

40 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

TABLE 12

inputl

Truth Table For a Single-Bit Selector Priority Encoder

input2 input3 input4 Output I

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

iz~pu~z has highest
priority

E X A M P L E 23 Example of Priority Encoder Synthesizable Code

LIBRARY IEEE ;

USE IEEE. std_logic_l164 .ALL;

ENTITY priori ty_en t IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

input3 : IN std_logic;

input4 : IN std_logic;

outputl : OUT std_logic

);

END priori ty_en t;

ARCHITECTURE priori ty_arch OF priori ty_ent IS

BEGIN

PROCESS (inputl, input2, input3, input4)

BEGIN

IF (inputl = 'i ') THEN

outputl <= 'I';

ELSIF (input2 = 'i') THEN

3.13 PRIORITY ENCODER 4 1

outputl <= '0';

ELSIF (input3 = 'i ') THEN

outputl <= 'i ';

ELSIF (input4 = 'i') THEN

outputl <= '0';

ELSE

outputl <= 'i';

END IF;

END PROCESS;

END priori ty_arch ;

input4 has lowest
priority

Priority encoders are often used when the designer knows exactly which signal
arriving at the priority encoder is late compared to the other signals. With reference
to Example 23, from the synthesized circuit of Fig. 20, i a p u t l (the highest priority
signal) is obviously a late arriving signal compared to input2, input3, and
input4. Therefore, the logic has input2, input3, and input4 being decoded in
advance while awaiting the late arriving signal input1.

Figure 21 shows 5 input signals (A, B, C, D and E) going to a logic component. Sig-
nal E is the late arriving signal compared to A, B, C and D. For cases like these, it is
preferable for the designer to use priority encoders. The VHDL code can be written
with I F statement with the first condition in the statement being the signal with high-
est priority (in this case E).

input4

input3

input2

inputl

FIGURE 20 Diagram for Synthesized Priority Encoder.

outputl

A _1

D

-I
E - later arriving signal

F I G U R E 21 Diagram Showing a Logic Component with Late Arriving Signal E .

42 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

3.14 M E M O R Y CELL

To design a memory cell, the designer can use a flip-flop and a multiplexer to repre-
sent one bit of memory. Writing RTL VHDL code for such a design is relatively easy.
See Fig. 22 for the diagram of a memory cell.

Example 24 shows the code that is used to synthesize a memory cell. Notice how
it only describes passing of d a t a _ i n to d a t a _ o u t when the w r i t e port is at a log-
ical '1', which would occur only during the rising edge of c l o c k .

Clock transitions
from low to high

Qualifier signal ,~rite
must be a'l' to allow
d a t a _ i n to be passed
tO data_out.

E X A M P L E 24 Example of Synthesizable Code for a M e m o r y Cell

LIBRARY IEEE;

USE IEEE. std_logic_l164.ALL;

ENTITY memory_en t IS

PORT (

data_in : IN std_logic;

clock : IN std_logic;

write : IN std_logic;

data_out : OUT std_logic

);

END memory_en t;

ARCHITECTURE memory_arch OF memory_ent IS

BEGIN

PROCESS (clock)

BEGIN

~_ IF (clock = 'i' AND clock'EVENT) THEN

IF (write = 'I') THEN

data_out <= data_in;

I

END memory_arch;

Such a memory cell design seems to be a waste of silicon area. Using transistors to
design a 1-bit memory cell seems much more econom/cal compared to using synthe-
sizable VHDL. However, the schematic in Fig. 22 is normally used in designs that
require storage of bits. In other words, it is used in designs that require memory cells
for storage of certain bits of data.

3.15 A D D E R 4 3

data_in

write

clock

D Q

> CLK

data_out

FIGURE 22 Diagram for Synthesized Memory Cell Using Flip-Flop.

3.15 A D D E R

Adders are basic logic components that are used in almost every single kind of
design. Most synthesis libraries customized for a certain synthesis tool more often
than not will have precompiled adders in them. Utilizing these is easily done in
VHDL code by a term called c o m p o n e n t i a s (refer to Chapter 3.16).

If a design needs to use an adder, the VHDL code can use the sign ' + '. The syn-
thesis tool will infer an adder upon seeing this symbol.

For the sake of learning synthesizable VHDL, Example 25 shows a descriptive
way to describe an adder with the logic function of Table 13. With this code, the syn-
thesis tool will build an adder out of logic gates. The adder's functionality is as
described in the code. See Fig. 23 for the block diagram of a synthesized adder.

TABLE 13 Truth Table for an Adder Logic Function

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

E X A M P L E 25 Example of Adder Synthesizable Code

LIBRARY IEEE;

USE IEEE. s td_l ogi c_l 164. ALL;

4 4 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

ENTITY adder_ent IS

PORT (

A : IN std_logic;

B : IN std_logic;

Cin : IN std_logic;

Sum : OUT std_logic;

Cout : OUT std_logic

);

END adder_en t;

ARCHITECTURE adder_arch OF adder_ent IS

BEGIN

Sum <= 'I' WHEN (((A='O') AND (B='O') AND (Cin='l')) OR

((A='O') AND (B='I') AND (Cin='O')) OR

((A='I') AND (B='O') AND (Cin='O')) OR

((A='I') AND (B='I') AND (Cin='l')))

ELSE '0';

Cout <= 'I' WHEN (((A='O') AND (B='I') AND (Cin='l')) OR

((A='I') AND (B='O') AND (Cin='l')) OR

((A='I') AND (B='I') AND (Cin='O')) OR

((A='I') AND (B='I') AND (Cin='l')))

ELSE '0';

END adder_arch;

Cin / ~

Sum

Cout

FIGURE 23 Block Diagram for a Synthesized Adder.

Figure 24 shows one method of using logic gates to build an adder. There are
many other different methods using logic gates to build an adder. Which method used
would differ from one synthesis tool to another, depending on the in-built synthesis
algorithm. The different sets of design constraints set upon the design will also influ-
ence the outcome of the synthesized schematics of the adder.

3.16 COMPONENT INFERENCE 45

B

Cin

~~)~ Cout

: ~ Sum

FIGURE 24 Schematic Diagram of an Adder Built of Logic Gates.

However for synthesis of a large adder that requires many bits, using combina-
tional logic gates to build an adder is simply inefficient. It would be much easier for
the designer to infer an adder using keyword ' * '. Component inference is discussed
in the next section (3.16).

3.16 C O M P O N E N T INFERENCE

Many examples have been shown in Chapter 3. Each of these examples describes the
functionality of a logic component to allow the synthesis tool to synthesize that logic
component. However, in real-life design, many of these examples (description of
basic logic gates) are not needed.

For example, if a designer needs to use a NOR gate, he/she does not need to write
RTL code for a NOR gate. Similarly, this is true for other logic gates such as the AND
gate and NOT gate.

These examples are given merely to allow the reader to gain a better understand-
ing of how synthesizable code is written.

Many synthesis tools have a precompiled synthesis library containing all of these
basic logic gates. The designer needs only to use certain symbols (or keywords) to
utilize these precompiled logic gates. This form of usage of precompiled logic gates
is referred to as component inference.

Example 26 shows how a code can be used to infer an AND gate that already
exists in the precompiled synthesis library.

46 CHAPTER 3 SYNTHESIZABLE CODE FOR BASIC LOGIC COMPONENTS

Inference of an AND
gate through the usage
of the keyword AND.

E X A M P L E 26 V H D L Code Showing A N D Gate Inference

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

ENTITY design_module_ent IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

output : OUT std_logic

);

END design_modul e_en t;

ARCHITECTURE design_module_arch OF design_module_ent IS

SIGNAL internal : std_logic;

BEGIN

output <= inputl AND input2;

END desi gn_modul e_arch;

Upon seeing the keyword AND, the synthesis tool would infer an AND logic gate.
Table 14 lists the other symbols/keywords that are often used for precompiled

component inference from the synthesis tool's library.

TABLE 14 Symbols/Keywords Used for Logic Component Inference

Symbol/Keyword Inferred Component

AND AND gate

OR OR gate

NOT NOT gate

NOR NOR gate

NAND NAND gate

+ Adder

- Subtractor

* Multiplier

/ Divider

Note: Keep in mind that component inference using symbols/keywords differs
from one synthesis tool to another.

4
SIGNAL VERSUS VARIABLE

Variables and signals are often assigned and used widely in VHDL code. Referring to
the many examples in Chapter 3, note that some examples use m i a m a l declarations
while others use v a r i a b l e declarations. Each declaration is used for different pur-
poses. Whichever is used depends on what is to be achieved by the code.

In essence, a VHDL simulator uses simulation ticks to evaluate a piece of code
and determine the conditions of the design being simulated. By using s i g n a l and
v a r i a b l e , the designer is able to control the update of the design information based
on those simulation ticks.

In general, a rule of thumb to remember is that the assigned value of a v a r i a b l e
is instantaneous, while for a s i g n a l the assigned value occurs only on the next sim-
ulation tick. This might not appear to be a big difference but it can cause quite a num-
ber of problems when a variable o r signal is not used correctly.

4. I V A R I A B L E

For Example 27, the variable var is incremented by one when input is "00".

IF (input = "00") THEN

var := var + I;

The assignment (v a r : = v a r + 1) is instantaneous. Similarly for the I F statement
that detects when v a r reaches 15, v a r is reset to 0 immediately.

IF (vat = 15) THEN

vat := 0;

47

48 CHAPTER 4 SIGNAL VERSUS VARIABLE

The designer must also bear in mind that the usage of variable is local to a
p r o c e s s . Therefore such declaration for a v a r i a b l e must be within the p r o c e s m
itself (VHDL-87 does not provide a shared variable).

The assignment of
the variable var is
instantaneous.

Conversion procedure
to convert from
integer tO a 4-bit

s td_l ogi c_vec tor

EXAMPLE 27 V H D L Code Showing the Usage of a Variable

LIBRARY IEEE ;

USE IEEE. std_logic_l164. ALL;

USE IEEE. std_logic_ari th. ALL;

ENTITY variable_ent IS

PORT (

input : IN std_logic_vector (i downto 0);

clock : IN std_logic;

output : OUT std_logic_vector(3 downto O)

);

END variable_ent ;

ARCHITECTURE variable_arch OF variable_ent IS

BEGIN

PROCESS (inpu t, clock)

VARIABLE var : INTEGER := O;

BEGIN

IF (clock = 'I' AND cl ock ' EVENT) THEN

IF (input = "00") THEN

var := var + I;

IF (var = 15) THEN

var := O;

END IF;

END IF;

ou tpu t <= CONV_STD_LOGIC_VECTOR (var, 4) ;

END IF;

END PROCESS;

END vari abl e_arch;

4.2 S IGNAL

Unlike a variable, a signal is global to an architecture and only needs to be
declared in the architecture. It can be used across all sequential processes. The
assignment of a value to a signal only occurs in the next simulation tick.

If a s i g n a l is assigned a value in a p r o c e s s and that same signal is used farther
down in the same sequential p r o c e s s , it will not have the updated value until the
next simulation tick.

4.2 SIGNAL 4 9

E X A M P L E 28 V H D L Code Showing the Usage of a Signal

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

USE IEEE. s td_l ogi c_ari th. ALL;

ENTITY signal_ent IS

PORT (

input : IN std_logic_vector (I downto 0);

clock : IN std_logic;

output : OUT std_logic_vector(3 downto O)

);

END signal_en t;

ARCHITECTURE signal_arch OF signal_ent IS

signal var : INTEGER := O;

BEGIN

PROCESS (input, var, clock)

BEGIN

IF (clock = 'i' AND clock'EVENT) THEN

IF (input = "00") THEN

var <= var + i;

IF (var = 15) THEN

var <= O;

END IF;

END IF;

END IF;

END PROCESS;

output <= CONV_STD_LOGIC_VECTOR (var, 4) ;

END signal_arch;

Value assigned to a
signal only occurs on
the next simulation
tick.

Although the code looks the same in Examples 27 and 28, when simulated and
synthesized, both will yield different results.

Example 29 is a testbench written to simulate Examples 27 and 28. Notice that
Example 29 is a VHDL code with two architecture and configuration declarations. The
architecture var_tb_arch and configuration eonf ig_var_tb allow simulation of
entity variable_ent (Example 27). The architecture sig_tb_arch and configura-
tion c o n f i g _ s i g _ t b allow simulation of entity s i g n a 2 _ e n t (Example 28).

Please take note that testbenches are non-synthesizable. Testbenches are used as a
surrounding mechanism to pump stimulus into a design under test. Testbenches are
used mainly for simulation.

5 0 CHAPTER 4 SIGNAL VERSUS VARIABLE

A testbench is a
wrapper around the
design that it
simulates. Therefore,
a testbench usually
does not have input
and output ports.

E X A M P L E 29 Testbench for Simulat ion of Signal and Variable Usage

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

ENTITY var_sig_tb_ent IS

~ E N D var_si g_ tb_en t;

ARCHITECTURE sig_tb_arch OF var_sig_tb_ent IS

COMPONENT si gnal_ent

PORT (

input : IN std_logic_vector (i downto 0);

clock : IN std_logic;

output : OUT std_logic_vector(3 downto O)

);

END COMPONENT;

SIGNAL input : std_logic_vector (I downto 0);

SIGNAL clock : std_logic := '0';

SIGNAL output : std_logic_vector (3 downto 0);

BEGIN

DUT_signal : signal_ent

PORT MAP (input, clock, output);

clock <= NOT clock AFTER 25 ns;

PROCESS

BEGIN

input <= "00";

wait for 1000 ns;

END PROCESS;

END sig_ tb_arch;

ARCHITECTURE var_tb_arch OF var_sig_tb_ent IS

COMPONENT variabl e_ent

PORT (

input : IN std_logic_vector (I downto 0);

clock : IN std_logic;

output : OUT std_logic_vector(3 downto O)

);

END COMPONENT;

SIGNAL input : std_logic_vector (i downto 0);

SIGNAL clock : std_logic := '0';

SIGNAL output : std_logic_vector (3 downto 0);

4.2 SIGNAL 5 I

BEGIN

DUT_variable : variable_ent

PORT MAP (input, clock, output);

clock <= NOT clock AFTER 25 ns;

PROCESS

BEGIN

input <= "00";

wait for i000 ns;

END PROCESS;

END vat_ tb_arch;

CONFIGURATION config_sig_tb OF var_sig_tb_ent IS

FOR sig_tb_arch

FOR ALL: signal_ent

USE ENTITY WORK. signal_ent (signal_arch) ;

END FOR;

END FOR;

END config_sig_ tb;

CONFIGURATION config_var_tb OF var_sig_tb_ent IS

FOR var_ tb_arch

FOR ALL: variable_ent

USE ENTITY WORK. variable_ent (variable_arch) ;

END FOR;

END FOR;

END config_var_ tb;

Figure 25 shows the simulation results of entity v a r i a b l e _ _ e n e . At every rising
edge of CLOCK, output of v a r i a b 2 e _ e n e increments by one. However, note that
when the output reaches a value of hexadecimal E (decimal equivalent of 15), the fol-
lowing output rolls over to 0.

CLOCK

INPUT ~ O0

OUTPUT _ _ 2

FIGURE 25 Timing Diagram Showing Simulation Result of Example 27 (Variable).

52 CHAPTER 4 SIGNAL VERSUS VARIABLE

CLOCK VLVkVU
INPUT ~ O0

OUTPUT _ _ I

FIGURE 26 Timing Diagram Showing Simulation Results of Example 28 (Signal).

Figure 26 shows the simulation results of enti(y s ignal_ent . At every rising
edge of CLOC~ output of n i f f a a l _ e a t increments by one. However, when the out-
put reaches a value of hexadecimal E (decimal equivalent of 15), the following out-
put is hexadecimal F (decimal equivalent of 16) and not 0.

Enti~ s i a m a l _ e n t does not roll over to 0 when it reaches hexadecimal E
because the assignment of value 0 to the signal v a t occurs only in the next simula-
tion tick.

IF (clock = ' 1 ' AND clock 'EVENT) THEN

IF (input = "00") THEN

var <= var + I;

IF (var = 15) THEN

var <= O;

END IF;

END IF;

END IF;

However, in the next simulation tick the event (clock - ' I' AND clock 'EVENT)
is no longer true. Hence the assignment of var to the value of 0 occurs only at the
next rising edge of CLOCK. This results in the output of signal_ent incrementing
to hexadecimal F before the roll over back to 0 occurs.

Assignment used in
the same simulation
tick in the sequential
statement.

4.3 W H E N T O USE S I G N A L A N D W H E N T O USE V A R I A B L E

As mentioned earlier, assignment to variable occurs instantaneously and assignment
to mignal only occurs on the next simulation tick. Therefore a good rule of thumb to
determine the suitable conditions to use s i g n a l ~ v a r i a b l e would be to ask yourself,
"Will I be using this assigned value in this same simulation tick?" If the answer is yes,
obviously you need to use a var iab le ; otherwise you can use a s igna l .

PROCESS (........)

BEGIN

var := 5;

IF (var = 5) THEN

END PROCESS;

4.4 USAGE OF LOOPBACK SIGNAL 5 3

It is also important for the reader to remember that usage of variable is local only
to a PROCESS (VHDL 87 does not allow the usage of a shared variable). If an
assigned value is to be shared among different PROCZSS, a s i a m a l is more appro-
priate.

PROCESS (........)

BEGIN

sig <= 5;

.

END PROCESS;

PROCESS (........)

B E G I N

I F (s i g = 5) THEN

END PROCESS;

However this does not mean that s i g n a l can only be used when an assigned
value is to be shared among different PROCZSS. It can also be used in a PROCZSS if
the assigned value is only needed on the next simulation tick.

PROCESS (........)

BEGIN

sig <= 5; ~"

END PROCESS;

Assignment is shared
among different
PROCZSS. Usage of
signal is more
appropriate.

The assigned value of
sig occurs only on
the next simulation
tick.

4.4 U S A G E O F L O O P B A C K S I G N A L

Use of signal in a VHDL file, whether structural behavioral or descriptive, is sim-
ply unavoidable. Signals are normally used to connect between pins of different com-
ponents or to interconnect modules with submodules. Another form for usage of
signal is loopback.

Figure 27 shows a circuit using a loopback signal whereby the signal output is
looked back internally.

The problem with using loopback signals is that output ports cannot be looped
back. In VHDL, if a port is declared to be an output port, that port cannot be used
internally in the design. It cannot be looped back into the design. If loopback is
required, the port must be declared a SUFFER and not an OUT port.

54 CHAPTER 4 SIGNAL VERSUS VARIABLE

input (0)

input (1)

enable

Q
output

FIGURE 27 Diagram Showing a Loopback Signal.

EXAMPLE 30 VHDL Code Showing the Declaration of a BUFFER
Port and an O U T Port
LIBRARY IEEE;

USE IEEE. std_logic-l164 . ALL;

r Port out:put:2 is being
looped back.

ENTITY BUFFER_OUT_ENT IS

PORT (

input : IN std_logic_vector (7 downto 0);

outputl : OUT std_logic;

output2 : BUFFER std_logic

);

END BUFFER_OUT_ENT ;

ARCHITECTURE BUFFER_OUT_ARCH OF BUFFER_OUT_ENT IS

SIGNAL internal_signal : std_logic;

BEGIN

m VHDL code here
. , o

internal_signal <= output2;

n more VHDL code

END BUFFER_OUT_ARCH;

Port declaration as BUFFER shown in Example 30 is not encouraged. When the
module containing BUFFER declaration is put together in full chip with other mod-
ules that do not use BUFFER declarations, errors will occur during compilation.
Any other module's port that is connected to output2 must also be declared as a
BUFFER.

In real-life designs, a port is commonly declared only as IN for input ports, OUT
for output ports, and INOUT for bi-directional ports. Use of BUFFER declaration is

4.4 USAGE OF LOOPBACK SIGNAL 5 5

seldom encountered due to the fact that connectivity between different design mod-
ules normally uses only IN, OUT and INOUT declarations.

In general, if a port is declared as an OUT port and the design requires the OUT
port to be looped back internally, a loopback signal is used.

EXAMPLE 31 Example Showing a Loopback Signal

LIBRARY IEEE ;

USE IEEE. std_logic_l164. ALL;

USE IEEE. std_logic_ari th. ALL;

ENTITY loopback_ent IS

PORT (

enable : IN std_logic;

input : IN std_logic_vector (I downto 0);

clock : IN std_logic;

output : OUT std_logic

);

END 1 oopback_en t;

ARCHITECTURE loopback_arch OF loopback_ent IS

SIGNAL loopback : std_logic;

BEGIN

PROCESS (enable, input, loopback)

BEGIN

IF (enable = 'i') THEN

IF (input = "00") THEN

loopback <= '0';

END IF;

END IF;

END PROCESS;

output <= loopback;

END 1 oopback_arch;

The synthesis result of Example 31 is the circuit that was shown in Fig. 27. Did
you notice how the signal was looped back internally in the design?

Declaration of a
signal for loop back

Connecting loot;back
to output port.

This Page Intentionally Left Blank

5
EXAMPLES OF COMPLEX

SYNTHESIZABLE CODE

Chapter 3 provided many examples of synthesizable VHDL code for some very basic
logic components. Chapter 4 gave explanations as to how variables and signals are
used in VHDL and how logic components are inferred. However, synthesizable
VHDL for complex components are much more complicated than the examples
shown in these chapters.

In Chapter 5, there are four examples (shifter, counter, memory module, and car
traffic controller) of synthesizable VHDL for complex logic. For each of these exam-
pies, testbenches and simulation results are shown to enable the reader to better
understand how VHDL code is mapped into hardware logic.

5.1 SH IFTER

There are three different kinds of shifters.

�9 Left shifter

Shift values to the left while the right-most bit is replaced by a zero.
�9 Right shifter

Shift values to the right while the left-most bit is replaced by a zero.
�9 Barrel shifter

Shift values in a loop.
For barrel shift right, the most significant bit is replaced with the least signifi-
cant bit.
For barrel shift left, the least significant bit is replaced with the most signifi-
cant bit.

5 7

5 8 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

For a data value of ' 1001' as an input to a shifter, the patterns seen on the output of
the shifter during every rising edge of clock for each individual shift are shown in
Table 15.

TABLE 15 Table Showing the Shifting of Data for Different Modes of Shifting

Clock 0 I 2 3 4 5 6 7

Shift Left i001 0010 0100 i000 0000 0000 0000 0000

Shift Right i001 0100 0010 0001 0000 0000 0000 0000

Barrel Shift Right i001 ii00 0110 0011 I001 ii00 0110 0011

Barrel Shift Left i001 0011 0110 ii00 i001 0011 0110 ii00

From Table 15, the least significant bit is tagged with a zero when shifting left.
Similarly when shifting fight, the most significant bit is tagged zero.

Table 16 shows the interface specification of a shifter module.

TABLE 16 Description of Pins and Descriptions for Shifter

Pins Direction Description

DATA Input

LOAD Input

ENABLE Input

CLOCK Input

MODE Input

OUTPUT Ou~ut

Data to be input to the shifter

Asserted low to load in the input data

Asserted low to enable the shift function

CrX:~Kinput, shifting occurs when ENABLE is low
and clock is at rising edge

Mode to determine for left shift, fight shift or barrel shift

MODZ(I:0) = "00" - shift left

MODE(I:0) = "01" - shift right

MODE(I:0) = "i0" - barrel shift right

/4ODZ(I:0) = "Ii" -barrel shift left

Output data after shift

Figure 28 shows a top-level block diagram with the input and output pins of the
design.

Before we proceed with the coding of the shifter, a flow chart (Fig. 29) is created
to facilitate coding. With a flow chart, it is much easier to code the design based on
the tracks of the flow chart. It is highly recommended that a new designer draw a state
machine or flow chart to represent the functionality of a design before attempting to
code it. If the designer is not comfortable with drawing flow charts prior to coding,

5.1 S H I F T E R 5 9

the designer can always use "bubble" diagrams or even "pseudocode." Whichever
approach is used, the end result is the same. Flow charts or bubble diagrams and
pseudocode are just a means to guide the designer to code a given design.

DATA (0)

DATA (1)

DATA (2)

DATA (3)

LOAD
r

ENABLE

CLOCK

MODE (0)

MODE (i)

F I G U R E 28

OUTPUT (0)._
v

OUTPUT (1).~
v

OUTPUT (2).~
v

OUTPUT (3).~

Pin Diagram for 4-Bit Shifter Design.

START

RISING EDGE

SHIFT RIGHT

I-
"-1 OUTPUT <= I

ENABLE='0' "-[SHIFTED DATAI

j-

MODE='00' ">-~1 SHIFT LEFT

MODE='0 I'

BARREL
SHIFT RIGHT MODE='I0' > ~ - ~ < MODE='I I'

END

~ N

BARREL
SHIFT LEFT

FIGURE 29 Diagram Showing Flow Chart for Shifter Design.

60 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESlZABLE CODE

Shift mode assignment

E X A M P L E 32 SynthesizableVHDL Code for a 4-Bit Shifter

LIBRAR Y IEEE;

USE IEEE. std_logic_l164 .ALL;

ENTITY shi fter_en t IS

PORT (

data : IN std_logic_vector(3 downto 0);

load : IN std_logic;

enable : IN std_logic;

clock : IN std_logic;

mode : IN std_logic_vector (i downto 0);

output : OUT std_logic_vector (3 downto 0)

);

END shi fter_en t;

ARCHITECTURE shifter_arch OF shifter_ent IS

SIGNAL internal_output : std_logic_vector (3 downto 0);

BEGIN

PROCESS (clock)

BEGIN

IF (clock = 'i' AND clock'EVENT) THEN

IF (enable = '0') THEN

IF (load = '0') THEN

internal_output <= data;

ELSE

IF (mode = "00") THEN

-- s h i f t l e f t

internal_output <=

internal_output (2 downto O) &

'0';

ELSIF (mode = "01 ") THEN

-- s h i f t r i g h t

internal_output <= '0' &

internal_output (3 downto I) ;

ELSIF (mode = "10 ") THEN

-- s h i f t b a r r e l r i g h t

internal_output <=

internal_output (0) &

internal_output (3 downto I);

ELSIF (mode = "11 ") THEN

-- s h i f t b a r r e l l e f t

internal_output <=

internal_output (2 downto O) &

internal_output (3) ;

5.1 SHIFTER 61

ELSE

ELSE

internal_output <= "0000";

END IF;

END IF;

internal_output <= "0000";

END IF;

END IF;

END PROCESS;

output <= internal_output;

END shi fter_arch;

The code written in Example 32 is a synthesizable code for a 4-bit shifter. Enlarg-
ing the shifter to accommodate more bits can be done by enlarging the DATA input
and O r ~ P U T ports.

A testbench is written to pump the stimulus into the shifter design to generate the
output pattern. This output pattern is viewed to ensure the code written for the shifter
design is functionally correct. The testbench also consists of a procedure
c h e c k da ta , which would assert messages on the simulator window when the out-
put values are not correct.

Default assignment
when none of the
shift modes match.

Default assignment
when shifter not
enabled.

EXAMPLE 33 Testbench for the 4-Bit Shifter Design

LIBRARY IEEE;

USE IEEE. std_logic_l164 .ALL;

-- PACKAGE for shifter

PACKAGE shi fter_package IS

CONSTANT CYCLE : TIME := 50 ns;

SIGNAL sig_data : std_logic_vector (3 downto 0);

SIGNAL sig_mode : std_logic_vector (I downto 0);

SIGNAL sig_output_before_shift : std_logic_vector (3 downto

0);

SIGNAL sig_output_after_shift : std_logic_vector (3 downto

0);

PROCEDURE 1 oad_da ta (

SIGNAL LOAD : OUT std_logic;

SIGNAL DATA : OUT std_logic_vector(3 downto O) ;

SIGNAL MODE : OUT std_logic_vector (I downto O)) ;

6~- CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

PROCEDURE check_da ta (

SIGNAL MODE : OUT std_logic_vector (i downto 0));

END shi fter_package;

Declaration of
procedure for
checking ouput

PACKAGE BODY shifter_package IS

PROCEDURE check_da ta (

SIGNAL MODE : OUT std_logic_vector (I downto 0)) IS

BEGIN

MODE <= sig_mode;

IF (sig_mode = "00") THEN

-- s h i f t l e f t

IF (sig_output_after_shift /=

sig_output_before_shift (2 downto O) & '0 ') THEN

ASSERT FALSE

REPORT "Error detected in shift left. "

SEVERITY WARNING;

END IF;

ELSIF (sig_mode = "Ol ") THEN

-- s h i f t r i g h t

IF (sig_output_after_shift /= '0 ' &

sig_output_before_shift (3 downto i)) THEN

ASSERT FALSE

REPORT "Error detected in shift right. "

SEVERITY WARNING;

END IF;

ELSIF (sig_mode = "I0") THEN

-- b a r r e l s h i f t r i g h t

IF (sig_output_after_shift /=

(sig_output_before_shift (0) &

sig_output_before_shift (3 downto I))) THEN

ASSERT FALSE

REPORT "Error detected in shift barrel

right. "

SEVERITY WARNING;

END IF;

ELSIF (sig_mode = "ii") THEN

-- b a r r e l s h i f t l e f t

IF (sig_output_after_shift /=

(sig_output_before_shift (2 downto O) &

sig_output_before_shift (3))) THEN

ASSERT FALSE

REPORT "Error detected in shift barrel

left. "

SEVERITY WARNING;

s.i S H I ~ E R 6 3

END IF;

END IF;

END check_data;

PROCEDURE load_data (

SIGNAL LOAD : OUT std_logic;

SIGNAL DATA : OUT std_logic_vector (3 downto O) ;

SIGNAL MODE : OUT std_logic_vector (I downto 0)) IS

BEGIN

DATA <= sig_data;

MODE <= sig_mode;

LOAD <= 'I';

wai t for CYCLE;

LOAD <= '0';

wait for CYCLE;

LOAD <= 'i';

wait for CYCLE;

END 1 oad_da ta ;

END shi fter_package;

-- T e s t b e n c h for sh i f ter

Declaration of
procedure to load
data into shifter.

LIBRARY IEEE;

USE IEEE. std_logic_l164 . ALL;

USE WORK. shi f ter_package.ALL ;

ENTITY shifter_tb_ent IS

END shifter_tb_ent ;

ARCHITECTURE shifter_tb_arch OF shifter_tb_ent IS

COMPONENT shi f ter_en t

PORT (

DATA : IN std_logic_vector(3 downto 0);

LOAD : IN std_logic;

ENABLE : IN std_logic;

CLOCK : IN std_logic;

MODE : IN std_logic_vector (I downto 0);

OUTPUT : OUT std_logic_vector (3 downto O)

);

END COMPONENT;

SIGNAL DATA : std_logic_vector (3 downto 0);

SIGNAL LOAD : std_logic;

SIGNAL ENABLE : std_logic;

SIGNAL CLOCK : std_logic := '0';

~ 4 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

SIGNAL MODE : std_logic_vector (i downto 0);

SIGNAL OUTPUT : std_logic_vector (3 downto 0);

BEGIN

DUT: shifter_ent

port map(DATA, LOAD, ENABLE, CLOCK, MODE, OUTPUT);

CLOCK <= NOT CLOCK AFTER CYCLE~2;

PROCESS

BEGIN

- - e n a b l e t h e design
ENABLE <= '0';

- - load data "1010" into design
sig_data <= "lOgO";

sig_mode <= "00";

wai t for CYCLE;

load_data (LOAD, DATA, MODE);

-- shift left
for i in 0 to 6 loop

sig_output_before_shift <= OUTPUT;

wait for CYCLE;

sig_output_after_shift <= OUTPUT;

wai t for CYCLE;

check_data (MODE);

end loop;

- - load data "1010" into design
sig_data <= "lOlO" ;

sig_mode <= "01 ";

wait for CYCLE;

load_data (LOAD, DATA, MODE);

-- shift right
for i in 0 to 6 loop

sig_output_before_shift <= OUTPUT;

wait for CYCLE;

sig_output_after_shift <= OUTPUT;

wai t for CYCLE;

check_da ta (MODE) ;

end loop;

s.I S H I ~ E R 6 S

- - load data "1 O01" into design
sig_data <= "lO01" ;

sig_mode <= "I0";

wait for CYCLE;

1 oad_da ta (LOAD, DATA, MODE) ;

- - shift barrel right - -

f o r i in 0 to 6 loop

sig_output_before_shift <= OUTPUT;

wait for CYCLE;

sig_output_after_shift <= OUTPUT;

wai t for CYCLE;

check_da ta (MODE) ;

end loop;

- - load data "1 O01" into design
sig_data <= "lOOl " ;

sig_mode <= "ii ";

wait for CYCLE;

load_data (LOAD, DATA, MODE) ;

- - shift barrel left--
f o r i in 0 to 6 loop

sig_output_before_shift <= OUTPUT;

wai t for CYCLE;

sig_output_after_shift <= OUTPUT;

wait for CYCLE;

check_da ta (MODE) ;

end loop;

END PROCESS;

END shifter_ tb_arch;

CONFIGURATION shifter_tb_config OF shifter_tb_ent IS

FOR shifter_ tb_arch

FOR ALL : shifter_ent

USE ENTITY WORK. shifter_ent (shifter_arch) ;

END FOR;

END FOR;

END shifter_tb_config;

From the testbench code for the shifter design, input stimuli of '1' and '0'
are pumped into the design to simulate different conditions as a way to check the
design for functionality of different modes for shifting left, shifting fight, and barrel
shifting.

66 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

CLOCK

ENABLE

LOAD . U

MODE [1 : 0]

DATA[3:0] --X A X

OUTPUT [3 : 0]

F I G U R E 30 Timing Diagram for Shift Left.

Figure 30 shows the timing diagram for shifting left. When signal LOAD is pulsed
'0', DATA is sent to OOWPtm. and when LOgO is back to logical ' 1', at every rising
edge of CLOCK shifts the data left by one bit. For every bit shifted left, the least sig-
nificant bit is replaced with a '0'.

Figure 31 shows the timing diagram for shift fight. DATA is loaded into the shifter
when LOAD is pulsed '0'. When LOAD is pulsed back to a '1', at every rising edge of
CLOCK DATA is shifted fight. When the shifting occurs, the most significant bit is
replaced with a '0'.

CLOCK

LOAD . ~

MODE [1 : 0]

DATA[3:0] --X A X

! OUTPUT [3 : 0]

F I G U R E 31 Timing Diagram for Shift Right.

Figure 32 shows the timing diagram for barrel shift fight. After loading in DATA
at every rising edge of CLOCK the most significant bit is replaced with the least sig-
nificant bit.

CLOCK

ENABLE [[

LOAD . ~

MODE [1 : 0]

DATA[3:0] --X 9 X

OUTPUT [3 : 0]

F I G U R E 32 Timing Diagram for Barrel Shift Right.

5.2 COUNTER 6 7

MODE[I:0

DATA [3 : 0

OUTPUT [3 :0]

CLOCK

- - 1 [
�9 L_._I

I - - X ,, X

3

FIGURE 33 Timing Diagram for Barrel Shift Left.

Figure 33 shows the timing diagram for a barrel shift left. After loading in DATA,
at every rising edge of CLOCK, the least significant bit is replaced with the most sig-
nificant bit.

To synthesize this shifter design using Synopsys's Design Compiler, a set of
design constraints first must be declared on the design. This set of constraints is to
include input delays, output delays, and clock period information.

The synthesis script and synthesis results for the shifter are not shown here as tim-
ing issues topics during synthesis have yet to be discussed. Appendix B shows the full-
scale synthesis of this shifter design, which includes design constraints and synthesis
tweaks to obtain optimal synthesis results using Synopsys's Design Compiler.

5.2 C O U N T E R

A counter can be set to count up or count down. By defining a 4-bit counter with
inputs LOAD, ENASLE, DATA, CLOCK MODE and output pin OUTPUT, a pin descrip-
tion table (Table 17) is created for the interface pins.

TABLE 17 Pin Description For Counter Design

Pin Input/Output Description

DATA Input

LOAD Input

ENABLE Input

CLOCK Input

MODE Input

OUTPUT Output

Data input pins

When asserted low, it will drive the OUTP~'T pins
with DATA input values

Asserted low to enable the design

Count occurs on rising edge of CLOCK after DATA

have been loaded in by pulsing LOAD low.

MODE = 0 for count up and MODE = 1 for count down

Output pins for counter design

The counter will roll over to '0000' when it has reached the maximum count of
'1111' for count up mode. Similarly in countdown mode, the counter will roll over to
'1111' when it has reached the minimum count value of '0000'.

68 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

DATA (0)
v

DATA (1)
v

DATA (2)
v

DATA (3)
r

BOND
v

ENABLE
r

CLOCK

OUTPUT (0).~
v

OUTPUT (1).~
r

OUTPUT (2).~
F

OUT PUT (3)_

MODE

FIGURE 34 Pin Diagram for a 4 - B i t C o u n t e r D e s i g n .

Figure 34 shows the block diagram for the counter with the interface pins.

Counting up for
count up mode.

EXAMPLE 34 SynthesizableVHDL Code for a 4-Bit Counter Design

LIBRARY IEEE;

USE IEEE. std_logic_l164.ALL;

USE IEEE. s td_l ogi c_ari th. ALL;

ENTITY counter_ent IS

PORT (

data : IN std_logic_vector (3 downto 0);

load : IN std_logic;

enable : IN std_logic;

clock : IN std_logic;

mode : IN std_logic;

output : OUT std_logic_vector (3 downto O)

);

END counter_ent ;

ARCHITECTURE counter_arch OF counter_ent IS

SIGNAL internal_output : std_logic_vector (3 downto 0);

BEGIN

PROCESS (clock)

BEGIN

IF (clock = 'i' AND clock'EVENT) THEN

IF (enable = '0') THEN

IF (load = '0') THEN

internal_output <= data;

ELSE

IF (mode = '0') THEN

internal_output <=

signed (internal_output) +

'i';

5.2 COUNTER 69

ELSIF (mode = 'I ') THEN

internal_output <=

signed (internal_output) -

'i';

ELSE

internal_output <= "0000";

END IF;

END IF;

ELSE

internal_output <= "0000";

END IF;

END IF;

END PROCESS;

output < = internal_output;

END coun ter_arch;

Example 34 uses the symbol '+ ' to count up. When the synthesis tool sees this
symbol, it will infer an adder. Some synthesis tools with incrementers in the precom-
piled library will infer an incrementer. Similarly, use of the symbol ' - ' for count-
down will infer a subtractor (or decrementer).

If the synthesis tool does not have an adder/subtractor/incrementer/decrementer, it
will use logic gates to construct the necessary logic required for the design.

Example 35 is a testbench written to exercise the design to ensure correct func-
tionality of the design. The testbench contains a procedure aheck_daea that would
assert a message on the simulation window if an error is detected on the output of the
counter with the expected output.

Counting down for
countdown mode.

Default value of
"0000".

EXAMPLE 35 Testbench for 4-Bit Counter Design

LIBRARY IEEE ;

USE IEEE. std_logic_l164 . ALL;

USE IEEE. std_logic_ari th. ALL;

-- PACKAGE for counter

PACKAGE counter_package IS

CONSTANT CYCLE : TIME := 50 ns;

SIGNAL sig_data : std_logic_vector (3 downto 0);

SIGNAL sig_mode : std_logic;

SIGNAL sig_output_before_add : std_logic_vector (3 downto

0);

~ CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

SIGNAL sig_output_after_add : std_logic_vector (3 downto

0);

PROCEDURE check_da ta (

SIGNAL MODE : OUT std_logic) ;

PROCEDURE 1 oad_da ta (

signal LOAD : out std_logic;

signal DATA : out std_logic_vector(3 downto O) ;

signal MODE : out std_logic) ;

END coun ter_package;

PACKAGE BODY counter_package IS

PROCEDURE check_da ta (

SIGNAL MODE : OUT std_logic) IS

BEGIN

MODE <= sig_mode;

IF (sig_mode = 'i') THEN

- - c o u n t u p

IF (sig_output_after_add /=

signed (sig_output_before_add) + 'i ') THEN

ASSERT FALSE

REPORT "Error in counting up"

SEVERITY WARNING;

END IF;

ELSIF (sig_mode = '0 ') THEN

- - c o u n t d o w n

IF (sig_output_after_add /=

signed (sig_output_before_add) - 'I ') THEN

ASSERT FALSE

REPORT "Error in counting down"

SEVERITY WARNING;

END IF;

END IF;

END check_da ta ;

PROCEDURE 1 oad_da ta (

signal LOAD : out std_logic;

signal DATA : out std_logic_vector(3 downto O) ;

signal MODE : out std_logic) IS

BEGIN

DATA <= sig_data;

MODE <= sig_mode;

LOAD <= 'i';

s.2 COUNTER ' / I

wait for CYCLE;

LOAD <= '0';

wai t for CYCLE;

LOAD <= 'I';

wait for CYCLE;

END 1 oad_da ta ;

END count er__pa ckage ;

- - T e s t b e n c h f o r c o u n t e r

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

USE WORK. coun ter_package. ALL;

ENTITY counter_tb_ent IS

END counter_ tb_en t;

ARCHITECTURE counter_tb_arch OF counter_tb_ent IS

COMPONENT count er_en t

PORT (

DATA : IN std_logic_vector(3 downto 0);

LOAD : IN std_logic;

ENABLE : IN std_logic;

CLOCK : IN std_logic;

MODE : IN std_logic;

OUTPUT : OUT std_logic_vector (3 downto O)

);

END COMPONENT;

SIGNAL DATA : std_logic_vector (3 downto 0);

SIGNAL LOAD : std_logic;

SIGNAL ENABLE : std_logic;

SIGNAL CLOCK : std_logic := '0';

SIGNAL MODE : std_logic;

SIGNAL OUTPUT : std_logic_vector (3 downto 0);

BEGIN

DUT: counter_ent

port map (DATA, LOAD, ENABLE, CLOCK, MODE, OUTPUT) ;

CLOCK <= NOT CLOCK AFTER CYCLE~2;

PROCESS

BEGIN

7~- CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

-- enable the design

ENABLE <= '0';

- - load data "1010" into design

sig_data <= "lOlO" ;

sig_mode <= '0 ';

wait for CYCLE;

load_data (LOAD, DATA, MODE);

-- count up

for i in 0 to 6 loop

sig_output_before_add <= OUTPUT;

wait for CYCLE;

sig_output_after_add <= OUTPUT;

wai t for CYCLE;

check_da ta (MODE) ;

end loop;

- - load data "1010" into design

sig_data <= "lOlO" ;

sig_mode <= 'i ';

wai t for CYCLE;

1 oad_da ta (LOAD, DATA, MODE) ;

-- count down

for i in 0 to 6 loop

sig_output_before_add <= OUTPUT;

wait for CYCLE;

sig_output_after_add <= OUTPUT;

wait for CYCLE;

check_da ta (MODE) ;

end loop;

END PROCESS;

END counter_ tb_arch;

CONFIGURATION counter_tb_config OF counter_tb_ent IS

FOR counter_tb_arch

FOR ALL : counter_ent

USE ENTITY WORK. counter_ent (counter_arch) ;

END FOR;

END FOR;

END counter_tb_conf ig;

Figures 35 and 36 show the timing diagram for counting up and counting down.

CLOCK

ENABLE

LOAD

MODE

DATA [3 : 0]

OUTPUT [3 : 0]

FIGURE 35

CLOCK

J I I I I I l I I I I L J I I I l I I 1 F l l L J I l I l I I I I L I I F l l L

m X A •
m

Timing Diagram Showing Count Up for Counter Design.

ENABLE

LOAD

MODE

DATA [3 : 0]

OUTPUT [3 : 0]
m

FIGURE 36

J 1J i I l [1 I LI l I 1 I [! LI I Fi [1 f [1 LI I FI I LJ I 1-[I L

m) ~ A X

s.3 MEMORY MODULE 7 3

Timing Diagram Showing Countdown for Counter Design.

To synthesize this counter design using Synopsys's Design Compiler, first a set of
design constraints must be declared on the design. This set of constraints includes
input delays, output delays, and clock period information.

The synthesis script and synthesis result for the counter are not shown here as topics
on timing issues during synthesis have yet to be discussed. Appendix C shows the full-
scale synthesis of this counter design, which includes design constraints and synthesis
tweaks to obtain optimal synthesis results using Synopsys's Design Compiler.

5.3 M E M O R Y M O D U L E

In Chapter 3.14, the synthesizable code for a 1-bit memory cell is shown. It is built
out of a multiplexer and a flip-flop. In daily use, one memory cell does not really
serve much purpose.

Daily encountered designs normally would require several tens of memory bits.
To obtain these N bits, the example in Chapter 3.14 can be expanded into an array.
However, in daily designs seldom will a designer synthesize a memory module as it

74 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

DATA (0)
, v

DATA (1)
v

DATA(2)

DATA(3)

DATA(4)

DATA (5)
v

DATA(6)

DATA(7)

READ WRITE

ENABLE

CLOCK

OUTPUT (0)_
r

OUTPUT (I)_
r

OUTPUT(2)_
v

OUTPUT (3)_

OUTPUT (4)_
v

OUTPUT (5)_
r

OUTPUT (6)_
r

OUTPUT (7)_

ADDRESS (9 downto 0)

FIGURE 37 Pin Diagram for Memory Module.

would take up a lot of silicon area. It would make more sense for a designer to use a
hand-drawn transistor level memory module. For the sake of discussion, however,
this chapter will show the reader how to code an N-bit memory module that is syn-
thesizable.

The VHDL coding style for synthesizing a memory module is pretty much the
same as that for synthesizing a 1-bit memory cell.

Assuming the memory module of Fig. 37 is to be 1 Kbyte in size with each
address location 8-bits wide, 10 address pins and 7 data pins are required. See Table
18 for pin description.

TABLE 18 Description of Pins for Memory Module Design

Pin Input/Output Description

DATA Input

READWRITE Input

ENABLE Input

CLOCK Input

ADDRESS Input

OUTPUT Output

Input pins where data is written into the memory module

When asserted low, it is a for a write cycle and
when asserted high, it is for a read cycle

Asserted low to enable the design

A write cycle or read cycle is initiated at every rising
edge of CLOCK when ENABLE is asserted low

Address inputs to the memory module

Output pins on which the data being read is driven

Again in this design approach, a flow chart (see Fig. 38) is used to represent
design functionality. If the designer is not comfortable with flow charts, he/she may
use bubble diagrams or pseudocode. Whichever is used, the end result is the same.
Flow charts, bubble diagrams or pseudocode is only meant to guide the designer to
code the VHDL.

5.3 MEMORY MODULE 7 5

I START 1

N

N

Y

I EN~

Y WRITE DATA INTO
MEMORY_ARRAY AT

LOCATION (ADDRESS)

READ DATA FROM
MEMORY_ARRAY FROM
LOCATION (ADDRESS)

FIGURE 38 Flow Chart for Reading/Writing for a Memory Module.

EXAMPLE 36 Example of Synthesizable Code for a I-Kbyte
Memory Module Design

LIBRAR Y IEEE;

USE IEEE. std_logic_l164 .ALL;

USE IEEE. s td_l ogi c_ari th. ALL;

ENTITY memmod_en t IS

PORT (

DATA : IN std_logic_vector (7 downto 0);

READ_WRITE : IN std_logic;

ENABLE : IN std_logic;

CLOCK : IN std_logic;

ADDRESS : IN std_logic_vector (9 downto O);

OUTPUT : OUT std_logic_vector (7 downto O)

);

END memmod_en t;

76 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

Declaration of type
memory_array_type

as array size of I
Kbyte with each array
sector 8-bits wide.

Detection of rising
edge of clock

Writing of data to
address location
tamp_var

Reading of data from
address location
tea~_var

ARCHITECTURE memmod_arch OF memmod_ent IS

TYPE memory_array_type IS array (0 to (2** (i0) - i)) OF

std_logic_vector(7 downto O) ;

SIGNAL memory_array : memory_array_ type;

BEGIN

PROCESS (CLOCK, ENABLE, READ_WRITE)

VARIABLE temp_var : INTEGER;

BEGIN

IF (CLOCK = 'i' AND CLOCK'EVENT) THEN

IF (ENABLE = '0') THEN

IF (READ_WRITE = '0') THEN

temp_var : = CONV_INTEGER (address) ;

memory_array (temp_var) <= data;

J ~ ELSIF (READ_WRITE= 'I')THEN

temp_var : = CONV_INTEGER (address) ;

J 7 OUTPUT <= memory_array (temp_var) ;

END IF;

END IF;

/ END IF;

Did you notice any similarities between Example 36 and Example 24 (1-bit mem-
ory cell)? Did you notice the similarities in the coding style for both examples?

From both Examples 24 and 36, the rising edge of CLOCKis detected to perform a
memory read or memory write sequence. This rising edge of CLOCK is transformed
into a flip-flop in hardware logic.

In Example 36, a ~r declaration is made on m ~ o ~ j _ a r r a y _ e . ~ e . This dec-
laration creates a new TYPE called m u o ~ l _ a r r a y _ t . ~ e that represents an array
1 Kbyte in size with each sector of the array 8-bits wide.

The signal m ~ . o ~ _ a r r a y is declared using the TYPE m ~ o . ~ _ a r r a y _ t . I , ~ e .
This means that the signal m ~ o r l r _ a r r a y is an array 1 KByte in size with each
array sector 8-bits wide.

The ADDRESS that is 10-bits wide is converted from std_logic_vector into
i n t e g e r and the result of this conversion is assigned to the Variable t emp_var .
The value of t e n ~ _ v a r decides from which of the sectors within the memory array
data should be read or into which sector data should be written.

Example 36 is a very simple design for designers that uses VHDL code instead of
conventional schematic capture. By only using several lines of code, a 1-Kbyte-
memory array is synthesized. If a designer is using schematic capture, it would take a
lot more than just a few lines of code.

A drawback to synthesis of a memory module is that the size of the memory mod-
ule is rather large as compared to a hand-packed transistor level memory module.
This is obvious because synthesis uses a multiplexer and a flip-flop to build 1 bit of
memory, whereas in the conventional transistor level only 6 transistors are required.

5.3 MEMORY MODULE 7 7

The time needed to synthesize a memory module might be longer than would be
required by many of the other examples in this book. The synthesis tool will have to
generate all the necessary logic gates to build the 1-Kbyte memory module, consist-
ing of 8192 (1024 • 8 bits) memory cells.

In real-life designs, a designer seldom synthesizes such a huge memory module.
Synthesis of a memory module is often limited to only tens or hundreds of bits. One
example of memory module synthesis would be for a small register file in a RISC
processor.

In Example 37, a testbench is written to simulate and verify the functionality of
the design.

EXAMPLE 37 VHDLTestbench for the Memory Module Design

LIBRARY IEEE;

USE IEEE. std_logic_l164 .ALL;

USE IEEE. std_logic_ari th. ALL;

-- PACKAGE for memory module

PACKAGE memmod_package IS

CONSTANT CYCLE : TIME := 50 ns;

SIGNAL sig_data : std_logic_vector (7 downto 0);

SIGNAL sig_read_write : std_logic;

SIGNAL sig_address : std_logic_vector (9 downto 0);

PROCEDURE wri te_da ta (

signal ADDRESS : OUT std_logic__vector (9 downto 0);

signal DATA : OUT std_logic_vector(7 downto O) ;

signal READ_WRITE : OUT std_logic) ;

PROCEDURE read_da ta (

signal ADDRESS : OUT std_logic_vector (9 downto 0);

signal DATA : OUT std_logic_vector(7 downto O) ;

signal READ_WRITE : OUT std_logic) ;

END memmod_package ;

PACKAGE BODY memmod_package IS

PROCEDURE wri te_da ta (

signal ADDRESS : OUT std_logic_vector (9 downto 0);

signal DATA : OUT std_logic_vector(7 downto O) ;

signal READ_WRITE : OUT std_logic) IS

BEGIN

I ~ CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

DATA <= sig_data;

READ_WRITE <= sig_read_write;

ADDRESS <= sig_address;

wai t for CYCLE;

END wri te_da ta;

PROCEDURE read_da ta (

signal ADDRESS : OUT std_logic_vector (9 downto 0);

signal DATA : OUT std_logic_vector(7 downto O) ;

signal READ_WRITE : OUT std_logic) IS

BEGIN

ADDRESS <= sig_address;

READ_WRITE <= sig_read_wri te;

wait for CYCLE;

END read_da ta ;

END memmod package;

-- T e s t b e n c h for m e m o r y m o d u l e

LIBRARY IEEE;

USE IEEE. std_logic_l164.ALL;

USE IEEE. std_logic_ari th. ALL;

USE WORK. memmod__package . ALL;

ENTITY memmod_ tb_en t IS

END memmod_ tb_en t;

ARCHITECTURE memmod_ tb_arch OF memmod_ tb_en t IS

COMPONENT memmod_en t

PORT (

DATA : IN std_logic_vector (7 downto 0);

READ_WRITE : IN std_logic;

ENABLE : IN std_logic;

CLOCK : IN std_logic;

ADDRESS : IN std_logic_vector (9 downto 0);

OUTPUT : OUT std_logic_vector (7 downto O)

);

END COMPONENT;

SIGNAL DATA : std_logic_vector (7 downto 0);

SIGNAL READ_WRITE : std_logic;

SIGNAL ENABLE : std_logic;

SIGNAL CLOCK : std_logic := '0';

SIGNAL OUTPUT : std_logic_vector (7 downto 0);

SIGNAL ADDRESS : std_logic_vector (9 downto 0);

BEGIN

5.3 MEMORY MODULE 7 9

DUT : memmod_en t

port map (DATA, READ_WRITE, ENABLE, CLOCK, ADDRESS,

OUTPUT) ;

CLOCK <= NOT CLOCK AFTER CYCLE~2;

PROCESS

BEGIN

-- enable the design
ENABLE <= '0';

-- write data into registers
FOR i IN 0 TO 6 LOOP

sig_read_write <= ' 0 ' ;

sig_data <= "00000000" OR CONV_STD_LOGIC_VECTOR (i, 8);

sig_address <= "0000000000" OR CONV_STD_LOGIC_VECTOR (i, i0) ;

wai t for CYCLE;

write_data (ADDRESS, DATA, READ_WRITE);

END LOOP;

-- read data from registers
FOR i IN 0 TO 6 LOOP

sig_read_write <= 'i ' ;

sig_address <= "0000000000" OR CONV_STD_LOGIC_VECTOR (i, i0) ;

wai t for CYCLE;

read_data (ADDRESS, DATA, READ_WRITE);

END LOOP;

END PROCESS;

END memmod_ tb_arch ;

CONFIGURATION memmod_tb__conf ig OF memmod__tb_ent IS

FOR memmod_ tb_arch

FOR ALL : memmod_en t

USE ENTITY WORK. memmod_ent (memmod_arch) ;

END FOR;

END FOR;

END memmod_ tb_conf ig;

Figures 39 and 40 show the timing waveform from the simulation of the memory
module using the testbench in Example 37.

The initial contents of memory array shown in Fig. 39 are invalid as they have not
been initialized. When Z ~ Z E and R ~ _ W R I T Z are low, the memory module is
enabled to operate in write mode. At every rising edge of CLOCK, DATA is written
into the memory array at a location indicated by ADDRESS.

8 0 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

CLOCK I l] l I i ! I I I 1 1 I L__J lJ--"
ENABLE

READ_WR I TE ~.

ADDRESS [9 : 0]

DATA [7 : 0]

MEMORY_ARRAY [0] O0

MEMORY_ARRAY [1]

MEMORY_ARRAY [2]

MEMORY_ARRAY [3]

MEMORY_ARRAY [4]

MEMORY_ARRAY [5]

MEMORY_ARRAY [6]

X 01

X 02

X 03

X 04

X 05

X 06

FIGURE 39 Timing Waveform for Memory Write to Memory Module Design.

CLOCK

READ_WRITE

ADDRESS[9:0]

OUTPUT [7 : 0]

MEMORY_ARRAY [0]

MEMORY_ARRAY[I]

MEMORY_ARRAY [2]

MEMORY_ARRAY [3]

MEMORY_ARRAY [4]

MEMORY_ARRAY [5]

MEMORY_ARRAY [6]

J l I 1 1 ! 1 1 [I I lJ---I I l I

..........

FIGURE 40 Timing Waveform for Memory Read from Memory Module Design.

From Fig. 40, ENABLE is asserted low while READ_WRITE is asserted high. This
would enable the memory module in the read mode. At every rising edge of CLOCK,

data are read from the memory array at the location indicated by ~_OD~SS. The data
are driven out of the memory module through the output pins OUTPUT.

5.4 CARTRAFFIC CONTROLLER 8 I

5.4 C A R T R A F F I C C O N T R O L L E R

State machines are very common in everyday design. They are easy to code and
debug when functional errors are detected.

There are several different styles of coding a state machine. Some designers like
to use different processes to represent the combinational logic and the state registers
and others prefer to code the combinational logic and the state registers in the same
process. No matter which style is used, the logic synthesized is similar to the same
set of module-level functionality. However, a good coding style to maintain uses sep-
arate PROCESS for state registers and combinational logic. This gives the designer
the flexibility to create separate levels of hierarchy in synthesis for the combinational
logic and state registers.

Table 19 shows the interface pin description of a Car Traffic Controller module.
The controller is built out of 4 inputs (EVALUATE, RED, YELLOW and GREEN). It is
used in a car to control the automatic acceleration, deceleration, and brake. When the
car approaches a traffic light, the traffic light will send 4 signals to the car. These sig-
nals are converted into electric signals by a sensor mounted on the top of the car.
These electric signals are each connected to the controller inputs of EVALUATE, RED,

YELLOW and GREEN. Based on different combinations of these four inputs, the con-
troller must decide the logical values to drive at the outputs BRAKE and SPEED.

When the input RED is at logical ' 1', the car must stop. When YELLOWis at logical
' 1 ', the car must slow down. When GREENiS at logical ' 1', the car can accelerate. For
any other combinations that involve more than either RED, YELLOW or GREENhaving

a logical ' 1', the car must stop.
The car stops when BRAKE is at logical '1' and SPEED is at logical '0'. When

BRAKE is at logical '0' and SPEED at logical '1' , the car will accelerate. When both
SPEED and BRAKE are at logical '0' , the car will slow down prior to stopping.

The evaluation of the three inputs (RED, YELLOW and GREEN) will occur at every
rising edge of EVALUATE. EVALtrATE is a signal that oscillates whenever the car
approaches a traffic light.

TABLE 19 Pin Description of a Car Traffic Controller Module

Pin Input/Output Description

EVALUATE Input

RED Input

YELLOW Input

GREEN Input

BRAKE Output

SPEED Output

At every rising edge of EVALUATE, polling of
input signals occurs

When at logical ' 1', the car must stop

When at logical '1', with GREEN and RED at logical '0',
the car must slow down

When at logical '1', with RED and YELLOWat logical '0',
the car must accelerate

Logical '1' means the car stops

Logical '1' means the car accelerates.

82 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

X- ((GREEN=I) AND (YELLOW=I)) OR ((GREEN=I)AND (RED=I))
OR ((YELLOW=I)AND (RED=I)) OR ((GREEN=I)AND (YELLOW=I) AND (RED=I))

GREEN=I / ~ / ~ YELLOW=I

FIGURE 41
RED=I

State Diagram for Car Traffic Controller Module.

A state diagram (Fig. 41) is drawn to represent the functionality of the Car Traffic
Controller module.

EXAMPLE 38 Example of Synthesizable VHDL for Car Traffic
Controller Module

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

ENTITY state_machine_ent IS

PORT (

EVALUATE : IN std_logic;

GREEN : IN std_logic;

YELLOW : IN std_logic;

RED : IN std_logic;

SPEED : OUT std_logic;

BRAKE : OUT std_logic

);

END s ta te_machine_en t;

ARCHITECTURE state_machine_arch OF state_machine_ent IS

TYPE state_type IS (GO, SLOW, STOP);

SIGNAL present_state, next_state : state_type := GO;

SIGNAL sig_all_light : std_logic_vector (2 downto O);

BEGIN

SPEED <= 'i' WHEN ((sig_all_light = "i00") AND

((present_state = GO) OR

(present_state = STOP))) ELSE '0';

5.4 CARTRAFFIC CONTROLLER 8 3

BRAKE <= '0 ' WHEN (((present_state = GO) AND

((sig_all_light = "100") OR (sig_all_light = "010")))

OR ((present state = SLOW) AND (sig_all_light =

"010")) OR ((present_state = STOP) AND (sig_all_light

= "i00"))) ELSE 'i';

PROCESS (GREEN, YELLOW, RED, present_state)

VARIABLE all_light : std_logic_vector (2 downto 0);

BEGIN

all_light := GREEN & YELLOW & RED;

sig_all_light <= all_light;

CASE present_state IS

WHEN GO =>

IF (all_light = "100") THEN

next_state <= GO;

ELSIE (all_light = "010") THEN

next_state <= SLOW;

ELSE

next_state <= STOP;

END IF;

WHEN SLOW =>

IF (all_light = "010") THEN

next_state <= SLOW;

ELSIE (all_light = "001") THEN

next_state <= STOP;

ELSE

next_state <= STOP;

END IF;

WHEN STOP =>

IF (all_light = "001") THEN

next_state <= STOP;

ELSIE (all_light = "i00") THEN

next_state <= GO;

ELSE

next_state <= STOP;

END IF;

WHEN OTHERS =>

next_state <= STOP;

END CA SE ;

END PROCESS;

Generation of next
state based on present
state of the state
machine

PROCESS (EVALUATE, next_state)

BEGIN

IF (EVALUATE = '1'AND EVALUATE'EVENT) THEN

present_state <= next_state;

Assigning next state
back to present
state

84 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

END IF;

END PROCESS;

END s tat e_machine_arch;

A testbench is written to exercise the functionality of the state machine.

EXAMPLE 39 Example of Testbench for Car Traffic
Controller Module

LIBRARY IEEE;

USE IEEE. std_logi c_l164 . ALL;

USE IEEE. std_logic_ari th.ALL;

-- PACKAGE for state_machine

PACKAGE s ta te_machine__package IS

CONSTANT CYCLE : TIME := 50 ns;

SIGNAL sig_green : std_logic;

SIGNAL sig_yellow : std_logic;

SIGNAL sig_red : std_logic;

PROCEDURE 1 oad_da ta (

SIGNAL GREEN : out std_logic;

SIGNAL YELLOW : out std_logic;

SIGNAL RED : out std_logic) ;

END s ta te_machine_package ;

PACKAGE BODY state_machine_package IS

PROCEDURE 1 oad_da ta (

SIGNAL GREEN : out std_logic;

SIGNAL YELLOW : out std_logic;

SIGNAL RED : out std_logic) IS

BEGIN

GREEN <= sig_green;

YELLOW <= sig_yellow;

RED <= sig_red;

wait for CYCLE;

END load_data;

END s ta te_machine_package ;

-- Testbench for state_machine

LIBRARY IEEE ;

USE IEEE. s td_l ogi c_l 164. ALL;

5.4 CARTRAFFIC CONTROLLER ~.~

USE IEEE. s td_l ogi c_ari th. ALL;

USE WORK. s ta te_machine_package. ALL;

ENTITY state_machine_tb_ent IS

END s ta te_machine_ tb_en t;

ARCHITECTURE state_machine_tb_arch OF state_machine_tb_ent IS

COMPONENT s ta te_machine_en t

PORT (

EVALUATE : IN std_logic;

GREEN : IN std_logic;

YELLOW : IN std_logic;

RED : IN std_logic;

SPEED : OUT std_logic;

BRAKE : OUT std_logic

);

END COMPONENT;

SIGNAL EVALUATE : std_logic := '0';

SIGNAL GREEN : std_logic;

SIGNAL YELLOW : std_logic;

SIGNAL RED : std_logic;

SIGNAL SPEED : std_logic;

SIGNAL BRAKE : std_logic;

BEGIN

DUT: state_machine_ent PORT MAP (EVALUATE, GREEN, YELLOW, RED,

SPEED, BRAKE) ;

EVALUATE <= NOT EVALUATE AFTER CYCLE~2;

PROCESS

VARIABLE temp : std_logic_vector (2 downto O);

BEGIN

FOR i IN 0 to 7 LOOP

temp := CONV_STD_LOGIC_VECTOR (i , 3);

sig_green <= temp (0);

sig_yellow <= temp (i) ;

sig_red <= temp (2) ;

wait for CYCLE;

1 oad_da ta (GREEN, YELLOW, RED) ;

END LOOP;

END PROCESS;

END s ta te_machine_ tb_arch;

86 CHAPTER 5 EXAMPLES OF COMPLEX SYNTHESIZABLE CODE

CONFIGURATION state_machine_tb_config OF state_machine_tb_ent IS

FOR sta te_machine_tb_arch

FOR ALL: s ta te_machine_en t

USE ENTITY WORK. state_machine_ent (state_machine_arch) ;

END FOR;

END FOR;

END s ta te_machine_ tb_conf ig;

Figure 42 shows the simulation results from the testbench of Example 39. Output
SPZZD drives logical '1' only when input tgl~zaris at logical ' 1 '. If more than one of
the three inputs GIVEN, r g z z o w , and i~gD are at logical '1', output SPEED must
always drive a value of logical '0' and s ~ a value of logical '1' to stop the car.
The car needs to stop if the traffic light that it is approaching is broken.

To synthesize this car traffic controller state machine using Synopsys's Design
Compiler, first a set of design constraints must be declared on the design. This set of
constraints includes input delays, output delays, and clock period information.
Appendix D shows the full-scale synthesis of this state machine design which
includes design, constraints and synthesis tweaks to obtain optimal synthesis results
using Synopsys's Design Compiler. Appendix D also shows how Synopsys's FSM
Compiler can be used to obtain optimal synthesis results for state machines.

EVALUATE

GREEN

YELLOW

RED

SPEED

BRAKE

\ I I I I [- -

\ I]

I I
I !

FIGURE 42 Timing Diagram Showing Simulation Results of a Car Traffic Controller.

6
PIPELINE M I C R O C O N T R O L L E R

SYNTHESIZABLE DESIGN

This chapter will bring the reader through the many steps needed in designing a full-
scale design project. The example used in this chapter for the design project is a
3-stage pipeline microcontroller.

The contents of this chapter include:

�9 definition of instruction set for the microcontroller;
�9 architectural definition of the design using flow charts and truth tables;
�9 microarchitectural and module interface definitions;
�9 testbench to simulate the design; and
�9 timing waveforms of simulation results.

6.1 I N S T R U C T I O N SET D E F I N I T I O N

The first thing that needs to be tackled prior to designing a microcontroller is to
define an instruction set that the microcontroller can decode and execute.

For a barebones microcontroller, at least eight instructions are required. These
instructions are basic operations that enable functionality of a microcontroller. Table
20 shows the instruction set with a description of each instruction.

TABLE 20 Description of Microcontroller Instruction Set

Instruction Set Description

HOVK <sourcel >, <des tina ti on>

ADD <sourcel >, <source2>,

~destination>

Move the contents of <sourcel > to

<des tina ti on>

Add the contents of <sourcel > and contents

of <source2> and put the result in

<des tina ti on>

continued

87

8 8 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

TABLE 20 continued

Instruction Set Description

SUB <sourcel>,<source2>,
<destination>

MUL <sourcel>,<source2>,
<des tina ti on>

CJE<sourcel>,<source2>,<CODE>

LOAD <value>, <des tina ti on>

READ <destination>

NOP

Subtract the contents of < s o u r c e l > with contents

of < s o u r c e 2 > and put the results in
<des tina ti on>

Multiply the contents of < s o u r c e l > with the

contents of < s o u r c e 2 > and put the result in

<des t ina t i on>

Compare contents of <sourcel > with the contents
of <source2> and if they are equal, jump to the
portion of the instruction that is associated with the
label <CODE>

Load the contents of < v a l ue> into

<des tina ti on>

Read the contents of <des tina ti on> and drive
the data on the output pins

No instruction

Having eight instructions would physically translate to three (23 = 8) input pins. If
additional instructions are required, the amount of bits to represent the instruction set
can be expanded.

Note: For the instruction set, < s o u r c e l > , <source2> and < d e s t i n a t i o n >
must be represented by either regO, re91, re92, reg3, reg4, reg5, re96,
reg7, reg8, reg9, reglO, regll, regl2, regl3, regl4 or regl5 (which
are internal registers of 32 bits each).

6.2 A R C H I T E C T U R A L D E F I N I T I O N

With the set of instructions defined, we must now define the interface of the micro-
controller.

To keep this task as simple as possible, several features that are normally found on
a commercial microcontroller are not included. This simplicity is meant to help the
reader focus on understanding the synthesizable code and not on learning pipeline
designs.

Some of the features that have not been included are:

�9 no 'register scoreboarding',
�9 no access to external memory.

If access to external memory is required, the architecture can be expanded to con-
sist of additional signals to the external memory module (and adding additional
instructions to enable access to the external memory).

6.2 ARCHITECTURAL DEFINITION 89

§
instruction I

cache I
I

instruction
memory

inst

sourcel

source2

destination

data

microcontroller

j ump

output

instruction
module

FIGURE 43

clock T
Diagram Showing Interface of Microcontroller.

If scoreboarding is required, the internal 16 registers that have 32 bits each can be
expanded to 33 bits each, with one of the 33 bits for each register to be used as a
scoreboard bit. of course, additional signals and circuitry will also be required to han-
dle the scoreboarding.

Another assumption for the microcontroller design is that an external instruction
cache and instruction memory supply the instructions and data into the microcontroller.

Figure 43 shows the microcontroller's interface with six inputs and two outputs. It
communicates with an external instruction module that loads instructions (with data)
to the microcontroller. The output jump is an input to the instruction module as a
qualifier for the instruction module to branch to another portion of the code when a
branch is taken during the c,rg instruction.

Table 21 contains the description for all of the input and output signals on the
interface of the microcontroller.

TABLE 21 Description of Microcontroller Interface Signals

Pins Input/Output Bit Size Description

inst Input 3

sourcel input 4

Instruction to be performed by the

microcontroller

0 0 0 - - M O V E

O01 ~ A D O

0 1 0 ~ s u b

011 ~ E t r z

100 ~ e y e

101 ~ L O A D

110 ~ RF_,aD

1 1 1 - - N O P

< s o u r c e 1 >

c o n t i n u e d

90 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

TABLE 21 continued

Pins Input/Output Bit Size

mource2 input 4
destination input 4
data input 32
clock input 1

jump output 1

output output 32

Description

<source2>

<des tina ti on>

Input dam for LOAD instruction

The microcontroller uses this clock input
to operate its pipeline on a clock-by-
clock cycle

Asserted high when the Ca'~ instruction
compares <sourcel> and <source2>
as having the same value

output of data for a g a ~ instruction

For sourcel, source2 and destination inputs, these are represented by 4
bits as the microcontroller has 16 internal registers. These registers are 32 bits each.
All of the instructions that utilize < s o u r c e l > , <source2>, and < d e s t i n a t i o n >
,Dust be one of these 16 registers.

Table 22 shows the representation of the 16 registers by binary values of input sig-
nals sourcel, sourcel, and destination.

TABLE 22 Representation of Sixteen Internal Registers for the
Microcontroller Design

source 1/source2/destination Register Register name

0000

0001

0010

0011

0100

0101

0110

0111

i000

i001

i010

i011

ii00

ii01

Iii0

i i i i

register 0

register 1

register 2

register 3

register 4

register 5

register 6

register 7

register 8

register 9

register i0

register ii

register 12

register 13

register 14

register 15

regO

regl

reg2

reg3

reg4

reg5

reg6

reg7

reg8

reg9

regl 0

regl 1

regl 2

regl3

regl 4

regl 5

6.3 PIPELINE DEFINITION 9 I

6.3 PIPELINE D E F I N I T I O N

With the architectural and interface signals definition completed, we will proceed to
the actual definition of the design of a microcontroller.

The design is based on a pipeline. To gain more information on the advantages,
disadvantages and the reasons for implementing pipeline designs, please refer to
Computer Architecture: A Quantitative Approach by John L Hennessy and David A.
Patterson (Morgan Kaufmann Publication) and Computer Organization & Design:
The Hardware~Software Interface by David A. Patterson and John L. Hennessy
(Morgan Kaufmann Publication).

By defining our microcontroller to be a 3-stage pipeline design, the microcon-
troller is separated into a predecode stage, decode stage, and an execute stage. See
Fig. 44 for the diagram.

Predecode stage is the stage that interfaces with the external instruction module.
The input signals for this stage receive the instructions and data from the instruction
module.

The decode stage decodes the input stimulus from the external instruction module
through the predecode stage. It also decodes the input stimulus. The output of this
stage will pass all the necessary information to the execute stage whereby the instruc-
tion is executed.

As the microcontroller is a pipeline design, the instruction going in must pass each
stage on a clock-by-clock basis, just like a pipeline. The design is of course much
more complicated than it sounds because pipeline designs must come prepared with
features that include execute bypassing. Execute bypassing is in general needed to
bypass data through a module because the data might be "outdated." Bypassing is a
mechanism often found in pipeline designs. The details of bypassing and how it can
affect a design will be discussed in detail later in this chapter.

A pipeline design assumes we have a set of four instructions being passed from
the instruction module to the microcontroller.

LOAD #FA, regO

LOAD #I, regl

ADD regO, regl, regl3

~regl3

As these instructions pass through each stage of the pipeline on every clock cycle,
a total of 6 clock cycles are required for the microcontroller to complete the execu-
tion of the set of 4 instructions.

- IPREDECODEI DECODE I E• ' I
FIGURE 44 Diagram Showing the Pipeline Stage of the Microcontroller.

92 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

Time

I

2

Predecode stage Decode stage Execute stage

LOAD #FA, reg0 ~ ~ ~ ~

ILOAD#1, regl x~OAD#FA, reg0 ~ ~ ~ [/ ~

ADD reg0, regl, regl3 ~tOAD#1, regl]_OAD#FA, reg0
\ N

READ regl3 ~ADD reg0, regl, regl3 ~LOAD#1, regl
N N

~~I~ ~ ~~READ regl3 ~ADD rag0, regl, regl3
~~I~ ~ W ~READ regl3

F I G U R E 45 Instruction Execution in a Pipeline.

Figure 45 shows the instructions being executed in a pipeline manner. Execution of 4
instructions would require a total of 6 clock cycles whereby the first 2 clock cycles
are required to pass the first instruction from predecode stage to execute stage.

6.4 M I C R O A R C H I T E C T U R E D E F I N I T I O N F O R T H E P I P E L I N E
M I C R O C O N T R O L L E R

To design the three stages of the pipeline, the microarchitectural implementation of
the design is considered. Functional partitioning and inter-functional blocks signal-
ing interface must be taken into consideration. Functional partitioning is an impor-
tant aspect of design. The different functions of a design can basically be grouped
into different partitions with each partition having to perform a certain function.
Good functional partitioning is important to achieve if the design is to have the opti-
mum performance and area utilization for a given architecture.

We begin with defining the functional blocks required for the design. We split the
function of the microcontroller into 4 different blocks - - the precode block, decode

Note: This pipeline microcontroller can in actual fact be designed using only one
block. Partitioning into different functional blocks is not needed as Synopsys's
Design Compiler is capable of synthesizing the whole pipeline microcontroller
(top-down synthesis approach). However, when dealing with much bigger
designs that consist of many thousands of gates, it is important to partition the
design into different functional blocks. Each block is individually coded and syn-
thesized (bottoms-up synthesis approach). Chapter 8 discusses in detail a differ-
ent synthesis approach (top-down and bottoms-up) on designs with different gate
counts.

This example of pipeline microcontroller is partitioned into different functional
blocks to illustrate to the reader how functional partitioning can be achieved.

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER 9

inst

sourcel

source2

destination~

data p~

FIGURE 46

pd_destination

pd_data �9

command

I -

PREDECODE

DECODE

)d_source2 i .

~ ,

pd-s~ i

p d r e a d
r

d_destination

d_sourcel

d_source2

d_command

d_data

flush

, d_sourcel_data
v

EXECUTION

REGISTER
FILE

d_source~data

ex data

ex store

e x _ d e s t i n a t i o n

[
Microarchitectural Definition for Fullchip Microcontroller.

jump

output

block, register file block, and execute block. Each of these blocks has a different
functionality.

Figure 46 shows the fullchip block interconnect for the microcontroller. The clock
signal is not shown in the diagram but it should be noted that the clock signal is
routed as an input to every block in the microcontroller. Another important signal is
the g 2 u s h signal. It is generated from execute block and input to predecode, decode
and register file block.

The signal g2uBh is asserted high when a branch occurs. This informs other func-
tional blocks that a branch has occurred. When a branch takes place, all current
instructions in each block must be flushed. This would allow new instructions (where
the branch is headed to) to be passed from the instruction module to the microcon-
troller. The jmnp signal, which is an output from execute block, is also an output
from the microcontroller to the instruction module. It is used by the instruction mod-
ule as an indicator that a branch has occured and the instruction module should send
new instructions (where the branch heads to) to the microcontroller.

This would assume that the instruction module will have its own internal circuitry
to keep track of the designation of the branch.

Before we proceed with the code for functional blocks, we will need to write a
VHDL package file that is referenced by all the functional blocks.

9 4 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

As was done in to Example 2, a library has been defined and linked to directory
WORK.

1. Create a file <filename> in directory SOURCE and in this file type the contents
below:

LIBRARY IEEE ;

USE IEEE. std_logic_l164 .ALL;

PACKAGE pipeline_package IS

TYPE command_ type IS (MOVE, ADD, SUB, MUL, CJE, LOAD,
READ, NOP) ;

TYPE register_type IS (regO, regl, reg2, reg3, reg4,

reg5, reg6, reg7, reg8, reg9, reglO, regll, regl2, regl3,

regl 4 , regl 5) ;
TYPE array_si ze IS array (0 t o 15) o f s t d_ 1 ogi c_vec t or (31
downto O) ;
CONSTANT ZERO. std_logic_vector (31 downto O) "= (others

=> ' 0 ') ;
END pipel ine__package ;

2. Compile the file <filename> into the library link to directory woaK.
3. When this is completed, you will have a VHDL library linked to the directory

woalr containing the precompiled VHDL package p i p e l ine_. .package.

6.4.1 Predecode Block

Predecode block handles the functionality of the predecode stage in the pipeline of
the microcontroller.

This block interfaces mainly with the external instruction module. It accepts
instruction and data from the instruction module and predecodes those instructions
before sending them to decode block. It also has interface signals with register file
block. These signals are used to request passing of data from the internal registers
(regO to r e g 2 5) of register file block to execute block. See Table 23 for a descrip-
tion and Fig. 47 for a diagram of predecode block interface signals.

TABLE 23 Description of Predecode Block Interface Signals

Signal name I/O Description

c l o c k Input
i n s t Input

Clock input
A 3-bit instruction bus
"000" = MOVE

"001" = ADD

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER 9 5

Signal name I/O Description

sourcel input

source2 input

destination input

data input

flush input

connnaad output

"010" = SUB

"011" =

"10 0" = CJ'M (compare and jump if equal)

"i01" = LOAD

"ii0" = READ

"111" = NOP (no operation)

A 4-bit bus to specify register to be used as <sourcel>

"0000" = reg

"0001" = regl

"0010" = reg2

"0011" = reg3

"0100" = reg4

"0101" = reg5

"0110" = reg6

"0111" = reg7

"i000" = reg8

"i001" = reg9

"i010" = reglO

"i011" = regll

"ii00" = regl2

"ii01" = regl3

"iii0" = regl4

"iiii" = regl5

A 4-bit bus to specify register to be used as <source2>

"0000" = regO

"0001" = regl

"0010" = reg2

"0011" = reg3

"0100" = reg4

"0101" = reg5

"0110" = reg6

"0111" = reg7

"i000" = reg8

"i001" = reg9

"i010" = reglO

"i011" = regll

"Ii00" = regl2

"Ii01" = regl3

"Iii0" = regl4

"Iiii" = regl5

A 4-bit bus to specify register to be used as
<des tina ti on>

"0000" = regO

"0001" = regl

"0010" = reg2

"0011" = reg3

"0100" = reg4

"0101" = reg5

"0110" = reg6

"0111" = reg7

"I000" = reg8

"I001" = reg9

"i010" = reglO

"i011" = regll

"ii00" = regl2

"Ii01" = regl3

"iii0" = regl4

"iiii" = regl5

A 32-bit bus for data input during LOAD instruction

asserted high when a branch occurs

Instruction to be passed to decode block. It will have value
type of command_ t y p e whereby command_ t y p e
is defined to be of type MOVE, ADD, St.ra, ~ Co~,
LOAD, READ and NOP.

96 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

TABLE 23

Signal name

continued

I /O Description

pd_sourael output Indication of <sourcel>, which is of type

r e g i s t e r_ t y p e and it can have a value of regO,
regl, reg2, reg3, reg4, reg5, reg6, reg7, reg8,
reg9, regl 0, regl i, regl2, regl 3, regl 4,
regl 5

pd_source2

pd_destination

output

output

Indication of <source2> which is of type

r e g i s t e r_ t y p e and it can have a value of regO,
regl, reg2, reg3, reg4, reg5, reg6, reg7, reg8,
reg9, regl 0, regl i, regl2, regl 3, regl 4,
regl 5

Indication of < d e s t i n a t i on>, which is of type
r e g i s t e r _ t y p e and it can have a value of regO,
regl, reg2, reg3, reg4, reg5, reg6, reg7, reg8,
reg9, regl 0, regl I, regl2, regl 3, regl 4,
regl 5

pd_data output A 32-bit bus for passing of data to decode block

pd_read output Single bit and asserted high to indicate to the register file
to read its internal register < p d s o u r c e l > and

< p d s o u r c e 2 > . Data read are put on the output as
<sourcel_da ta> and <source2_da ta>.

clock
r

inst

sourcel

source2

d e s t i n a t i o n

d a t a

f l u s h

FIGURE 47

PREDECODE

command

p d _ s o u r c e l

pd_source2

p d _ d e s t i n a t i o n
>

pd_read

p d _ d a t a
v

Diagram Showing the Predecode Block Interface Signals.

EXAMPLE 40 Example of Predecode Block SynthesizableVHDL

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

USE WORK. pipel ine_package. ALL;

ENTITY predecode_ent IS

PORT (

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER 9 ~

clock : IN std_logic;

inst : IN std_logic_vector (2 downto 0);

sourcel : IN std-logic_vector (3 downto 0);

source2 : IN std_logic_vector (3 downto 0);

destination : IN std_logic_vector (3 downto 0);

data : IN std-logic_vector (31 downto 0);

flush : IN std_logic;

command : OUT command_ type;

pd_sourcel : OUT register_type;

pd-source2 : OUT register_type;

pd_destination : OUT register_type;

pd_data : OUT std_logic_vector (31 downto 0);

pd_read : OUT std_logic

);

END predecode_en t;

ARCHITECTURE predecode_arch OF predecode_ent IS

BEGIN

PROCESS (clock, inst, sourcel, source2, destination, data,

flush)

VARIABLE internal_command : command_type := NOP;

VARIABLE internal_sourcel : register_type := regO;

VARIABLE internal_source2 : register_type := regO;

VARIABLE internal_destination : register_type := regO;

BEGIN

IF (clock = 'i' AND clock'EVENT) THEN

IF (flush = '0') THEN

CASE inst IS

WHEN "000" =>

pd-read <= 'i ' ;

internal_command : = MOVE;

WHEN "001 " =>

pd_read <= 'i ' ;

internal_command : = ADD;

WHEN "010" =>

pd_read <= 'i ' ;

internal_command : = SUB;

WHEN "011" =>

pd-read <= 'i ' ;

internal_command : = MUL;

WHEN "100" =>

pd_read <= 'i ' ;

internal_command : = CJE;

WHEN "101" =>

Decoding on
inst input into
command_ type

values.

pd_._read is set to '1'
when an instruction
requires reading the
values of internal
registers.

98 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESlZABLE DESIGN

Decoding of mouzoel
to determine register
used for <source1>.

Usage of cs~z state-
ment to represent a
huge multiplexer, z~
statement is not used
as it would generate
priority encoder.

pd_read <= '0';

internal_command : = LOAD;

WHEN "ii0" =>

pd_read <= 'I';

internal_command : = READ;

WHEN "iii" =>

pd_read <= '0';

internal_command : = NOP;

WHEN OTHERS =>

NULL;

END CASE;

CASE sourcel IS

WHEN "0000'' =>

internal_sourcel := regO;

WHEN "0001" =>

internal_sourcel : = regl;

WHEN "0010" =>

internal_sourcel : = reg2;

WHEN "0011" =>

internal_sourcel : = reg3;

WHEN "0100" =>

internal_sourcel : = reg4;

WHEN "Ol Ol " =>

internal_sourcel : = reg5;

WHEN "0110" =>

internal_sourcel : = reg6;

~. WHEN "0111" =>

internal_sourcel : = reg7 ;

WHEN "i000" =>

internal_sourcel : = reg8;

WHEN "i001" =>

internal_sourcel : = reg9;

WHEN "i010" =>

internal_sourcel := reglO;

WHEN "I011" =>

internal_sourcel := regll;

WHEN "ii00" =>

internal_sourcel : = regl2;

WHEN "ii01" =>

internal_sourcel : = regl3;

WHEN "IIi0" =>

internal_sourcel : = regl4;

WHEN "IIii" =>

internal_sourcel : = regl5;

WHEN OTHERS =>

NULL;

END CASE;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER ~ 9

CASE source2 IS ~ I

WHEN "0000" => ~ I

�9 -- :- ; I
internal source2 := regO;

I WHEN "0001" =>

internal_source2 : = regl ;

WHEN "0010" =>

internal_source2 := reg2;

WHEN "0011 " =>

internal_source2 : = reg3 ;

WHEN "0100" =>

internal_source2 := reg4;

WHEN "0101" =>

internal_source2 : = reg5;

WHEN "0110" =>

internal_source2 := reg6;

WHEN "0111" =>

internal_source2 := reg7 ;

WHEN "1000" =>

znternal_source2 : = reg8;

WHEN "1001" =>

internal_source2 : = reg9;

WHEN "1010" =>

internal_source2 := reglO;

WHEN "1011" =>

internal_source2 := regll ;

WHEN "1100" =>

internal_source2 := regl2;

WHEN "i101 " =>

internal_source2 := regl3 ;

WHEN "1110" =>

internal_source2 := regl4;

WHEN "iiii" =>

internal_source2 := regl5 ;

WHEN OTHERS =>

NULL;

END CA SE ;

CASE destination IS

WHEN "0000" =>

internal_destination := regO;

WHEN "0001" =>

internal_destination := regl ;

WHEN "0010" =>

internal_destination := reg2;

WHEN "0011" =>

internal_destination := reg3 ;

WHEN "0100" =>

internal_destination := reg4 ;

Decoding of s o u r c e 2

to determine register
used for < s o u r c e 2 > .

Usage of CASE state-
ment to represent a
huge multiplexer. I F

statement is not used
as it would generate
priority encoder.

Decoding of
destination

to determine

register used for
<des tina tion>.

J 0 0 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

Usage of c a s z state-
ment to represent a
huge multiplexer. Z F
statement is not used
as it would generate
priority encoder.

Default ~xt_data to
value of data when a
LOAD instruction is
decoded.

Default to NoP when
Zlumh is detected '1 '.

ELSE

WHEN "0101 " =>

internal_destination := reg5;

WHEN "0110" =>

internal_destination := reg6;

WHEN "0111" =>

internal_destination := reg7;

WHEN "I000" =>

internal_destination := reg8;

WHEN "I001 " =>

Internal_destination := reg9;

WHEN "i010" =>

internal_destination : =reglO;

WHEN "I011" =>

internal_destination : =regll ;

WHEN "1100" =>

internal_destination : =regl2 ;

WHEN "ii01 " =>

Internal_destination : =regl3 ;

WHEN "iii0" =>

in ternal_des tina ti on : =regl 4;

WHEN "iiii" =>

Internal_destination : =regl5 ;

WHEN OTHERS =>

NULL;

END CA SE ;

IF (internal_command = LOAD) THEN

pd_data <= data;

ELSE

pd_da ta <=

(others => '0');

END IF;

pd_data <= (others => '0 ') ;

internal_command : = NOP;

pd_read <= '0';

END IF;

command <= internal_command;

pd_sourcel <= internal_sourcel;

pd_source2 <= internal_source2;

pd_destination <= internal_destination;

END IF;

END PROCESS;

END predecode_arch;

With the code in Example 40 for predecode block, a testbench is written to inject
stimulus for simulation to check the functionality.

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER ~ 0 |

EXAMPLE 41 Example of V H D L Code forTestbench to Check for
Correct Functionality

LIBRARY IEEE;

USE IEEE. std-logic_l164 . ALL;

USE WORK. pipel ine_package . ALL;

ENTITY predecode_ tb_en t IS

END predecode_ tb_en t;

ARCHITECTURE predecode_ tb_arch OF predecode_ tb_en t IS

COMPONENT predecode_en t

PORT (

clock : IN std_logic;

inst : IN std-logic_vector (2 downto 0);

sourcel : IN std_logic_vector (3 downto 0);

source2 : IN std_logic_vector (3 downto 0);

destination : IN std_logic_vector (3 downto 0);

data : IN std_logic_vector (31 downto 0);

flush : IN std-logic;

command : OUT command_ type;

pd_sourcel : OUT register_type;

pd_source2 : OUT register_type;

pd_destination : OUT register_type;

pd_data : OUT std_logic_vector (31 downto 0);

pd_read : OUT std_logic

);

END COMPONENT;

SIGNAL data . std_logic_vector (31 downto 0);

SIGNAL sourcel : std_logic_vector (3 downto 0);

SIGNAL source2 : std_logic_vector (3 downto 0);

SIGNAL clock : std_logic := '0';

SIGNAL inst : std_logic_vector (2 downto O);

SIGNAL destination : std_logic_vector (3 downto 0);

SIGNAL flush : std_logic;

SIGNAL command : command_ type;

SIGNAL pd_sourcel : register_type;

SIGNAL pd_source2 : register_type;

SIGNAL pd_destination : register_type;

SIGNAL pd_data : std_logic_vector (31 downto 0);

SIGNAL pd_read : std-logic;

CONSTANT CYCLE : TIME := 50 ns;

I ~ - CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

BEGIN

DUT: predecode_ent port map(clock, inst, sourcel, source2,

destination, data, flush, command,

pd_sourcel, pd_source2,

pd_destination, pd_data, pd_read);

clock <= NOT clock AFTER CYCLE~2;

PROCESS

BEGIN

- - default output set to 0
sourcel <= "0000";

source2 <= "0000";

destination <= "0000";

data <= ZERO;

inst <= "III";

-- flush is O, no flushing

flush <= '0';

-- load "4592fa83" into regO instruction
inst <= "i01";

data <= "01000101100100101111101010000011";

destination <= "0000";

wait for CYCLE;

- - load "00000001" into reg 15 instruction
inst <= "I01";

data <= "00000000000000000000000000000001";

destination <= "iiii";

wait for CYCLE;

-- mov regO, reg8

inst <= "000";

sourcel <= "0000 ";

destination <= "I000";

wai t for CYCLE;

- - add regO, reg 15, reg 1

inst <= "001";

sourcel <= "0000";

source2 <= "iiii";

destination <= "0001";

wait for CYCLE;

-- no operation
inst <= "IIi";

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER 103

wait for CYCLE;

inst <= "Iii";

wait for CYCLE;

END PROCESS;

END predecode_ tb_arch ;

CONFIGURATION predecode_ tb_config OF predecode_ tb_en t IS

FOR predecode_ tb_arch

FOR ALL : predecode_ent

USE ENTITY WORK.predecode_ent (predecode_arch) ;

END FOR;

END FOR;

END predecode_ tb_ con f i g;

The testbench of Example 41 simulates predecode block with the following
instructions:

nOA~ #4592fa83, regO

LOAD #00000001, regl5

MO~ regO, reg8

ADD regO, regl5, regl

NOP

Figure 48 shows the waveform from the simulation of the testbench.

clock

inst [2 : O]

sourcel [3 : O]

source2 [3 : 0]

destination [3 : 0

data[31:O]

flush

command

pd_sourcel [3 : O]

pd_source2 [3 : O]

pd_destination

pd_data [31 : O]

pd_read

_ _ ! I I l l 1 2 1 1 3 1 I 41 I s I r - -
X s X s ,,X o X ' X 7 X

X o X

X o X F X
X o X F X 8 X ' X
X 4SgZFA83 • ooooooo, X

\ !
............................ X ,OAO X ,OAO X Mov X Aoo X NOP X.

. X ,EGO X.

"X REG0 X REG0 X REG0 X REGI5 X REG!5 X..

'X REG0 X REGI5 X REG8 X REGI X REGI X

X 4592FA83 X 00000001 X 00000001 X

\ I I /
FIGURE 48 Timing Waveform for Predecode Testbench.

[0 4 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

From Fig. 48:

1. At the rising edge of 1st clock,

�9 f l u s h is at logical ' 0 '. No flushing should occur.

�9 i n s t is at a value of 5. Predecode block will translate to a LOAD instruc-
tion on output CO~U~D.

�9 Since the command is LOAD, pd___read is driven to a logical ' 0 ' ,

indicating to register file block that no reading of any registers is
necessary.

�9 sourcel and source2 show a value of 0. This is decoded to regO.
pd_sourcel and pal_source2 drive the value regO of type
register_type.

�9 destination has a value of O. This is decoded to regO.
pal_destination drives the value regO of type register_ type.

�9 data shows value of 4592FA83. This value is driven onto the pd_data

output.
�9 At the end of 1st clock, predecode block has decoded the instruction LOAD

of value of 4592FA83 into register r e g O as designated by d e s t i n a t i o n .

2. At the rising edge of 2 nd clock,

�9 f l u s h is at logical ' 0 '. No flushing should occur.
�9 eonnnand drives r, OAD instruction since i n s t is showing a value of 5.
�9 sourcel and source2 still remains at the value of 0. pd_sourcel and

p a l _ s o u r c e 2 continue to drive regO.

�9 d e s t i n a t i o n changes to value F and this decodes to r e g l 5 .

p a l _ d e s t i n a t i o n changes from r e g O to r e g l 5.

�9 d a t a is at value 1. p a l _ d a t a drives value 1.
�9 At the end of the 2 nd clock, an instruction LOAD value of data

' 0 0 0 0 0 0 01 ' into register r e g l 5 as designated by d e s t i n a t i o n

is decoded.
3. At the rising edge of 3 rd clock,

�9 f l u s h is at logical ' 0 '. No flushing should occur.
�9 i n s t is at value of 0. This decodes to a MOVE instruction, connnand

drives HOVE.
�9 sourcel and source2 are still at value 0. pd_sourcel and
pal_source2 drive regO.

�9 destination has a value of 8. This decodes to reg8.

pd_destination drives reg8.
�9 d a t a remains the same. But since the instruction driven out is of type

HOVE, p d _ _ d a t a drives all zeros.

�9 The instruction MOVE involves the reading of contents of certain registers.

p d _ _ r e a d is asserted to logical ' 1 ' to indicate to register file block to
read the contents of register designated by p d _ _ s o u r e e l and
pd_source2.

�9 At the end of the 3 rd clock cycle, an instruction M O V E of contents r e g O

(as designated by s o u r c e /) into r e g 8 (which is designated by

destination) is decoded.

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER J 0 5

4. At the rising edge of 4 th clock,

�9 flush is at logical ' 0 '. No flushing should occur.
�9 i n s t is now at a value of ' 1 '. command drives ADD.
�9 s o u r c e 1 is still 0. p d _ _ s o u r e o l continues to drive regO. s o u r c e 2

has a value of F that decodes to r e g l 5. p d _ s o u r e e 2 drives
r e g l 5. d e s t i n a t i o n has a value of 1 which decodes to r e g l .
pal_destination drives regl.

�9 p d _ r e a d asserted to a logical ' 1 ' to indicate to register file block to read
the contents of register designated by p d _ s o u r e e l and pd__souree2 .

�9 p d _ d a t a drives all zeros since this command is ADD.
�9 At the end of the 4 th clock cycle, the instruction ADD of contents of regO

with the contents of r e g l 5 is decoded. The result is to be stored in r e g l .
5. At the rising edge of the 5th clock,

�9 f l u s h is at logical ' 0 '. No flushing should occur.
�9 inst has a value of 7. This is decoded into instruction NOP. command

drives NOP.
�9 p d _ r e a d de-asserts back to logical ' 0 ' since the instruction is NOP.

All other outputs remain the same but are invalid.

�9 This cycle decodes the instruction NOP (no operation).

6.4.2 Decode Block

Decode block makes up part of the decode stage in the pipeline of the microcon-
troller. The other half of this stage is made up of the register file block.

Decode block decodes the inputs to this block and passes them out at the next
clock cycle to the execute block. It is an additional block that takes up one clock cycle
in the pipeline stage when instructions like ADD, St;B, NtrL, CJE, or READ get into the
pipeline. During these instructions, values from internal registers in register file
block are to be passed to execute block in order to perform the operation.

Table 24 contains a description of the interface signals of decode block and
Fig. 49 provides a diagram.

clock

command

pdsourcel

pdsource2

pd_destination

pd_data

flush

DECODE

d_command

d_sourcel

d source2

ddestination

d_data

FIGURE 49 Diagram Showing the Interface Signal of Decode Block.

106 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

TABLE 24 Description of Decode Block Interface Signals

Signal Name UO Description

clock Input Clock signal.

command Input Input of type command- t y p e which can be any o f MOVE,
ADD, SUB, .afft~, CJ~g, LOAD, READ and NOP.

pd_sourcel Input Input of type regis ter_ type, which can be any of regO,
regl, reg2, reg3, reg4, reg5, reg6, reg7, reg8,
reg9, regl O, regll, regl2, regl3, regl 4 or regl5.
It indicates the register to be used for <sourcel >.

pd_source2 Input Input of type r e g i s t e r _ t y p e which can be any of regO,
regl, reg2, reg3, reg4, reg5, reg6, reg7, reg8,
reg9, regl O, regl I, regl 2, regl 3, regl 4 or regl 5.
It indicates the register to be used for <source2>.

pd_destination Input Input of type r e g i s t e r _ t y p e which can be any of regO,
regl, reg2, reg3, reg4, reg5, reg6, reg7, reg8,
reg9, regl O, regl i, regl 2, regl 3, regl 4 or regl 5.
It indicates the register to be used for <des tina ti on>.

p d _ da t a Input 32-bit bus, which is used to pass data between predecode block
and decode block during a LOAD instruction.

flush Input When asserted high, decode block must go into flush mode.
This happens when a branch occurs.

d_command Output Passing of instruction to execute block. It is of type
command- t y p e , which can be any of HOVE, ADD, St/B,
ram, Cd~, LOAD, READ and NOP.

d_des t ina t i on Output Passes the information of pd_destination from predecode
block to execute block.

d_sourcel Output Passes the information of pd_sourcel from predecode block
to execute block.

d_ source2 Output Passes the information o f p d s o u r c e 2 from predecode block
to execute block.

d__data Output Passes the information of pal_data to execute block during a
LOAD instruction.

EXAMPLE 42 Example of Decode Block SynthesizableVHDL

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

USE WORK.pipeline_package. ALL;

ENTITY decode_en t IS

PORT (

clock : IN std_logic;

command : IN command_ type;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER | 0 7

pd_sourcel : IN register_type;

pd_source2 : IN register_type;

pd_destination : IN register_type;

pd data : IN std_logic_vector (31 downto 0);

flush : IN std_logic;

d_command : OUT command_ type;

d_destination : OUT register_type;

d_sourcel : OUT register_type;

d-source2 : OUT register_type;

d-data : OUT std-logic_vector (31 downto O)

);

END decode_en t;

ARCHITECTURE decode_arch OF decode_ent IS

BEGIN

PROCESS (clock, command, pd_sourcel, pd_source2,

pd_des tina tion, flush, pd_da ta)

BEGIN

IF (clock = 'i' AND clock'EVENT) THEN

IF (flush = '0') THEN

CASE command IS

WHEN MOVE =>

-- MOVE <source |>, <destination>
-- <source2> is defaulted to reg0
- - d data defaulted to all z e r o

m

-- since it is only used during

- - L O A D

d_sourcel <= pd_sourcel ;

d_source2 <= regO ;

d_destination <=

pd_des tina ti on;

d_data <= ZERO;

WHEN ADD =>

- - A D D <source 1 > ,<source2>,<dest inat ion>

-- d data default to all zeros

d_sourcel <= pd_sourcel ;

d_source2 <= pd_source2;

d_destination <=

pd_des tina ti on;

d_data <= ZERO;

WHEN SUB =>

- - S U B source 1 > ,<source2>,<dest inat ion>

- - d data default to Z E R O
m

d_sourcel <= pd_sourcel ;

d_source2 <= pd_source2;

d_destination <=

Definition of actions
to be taken for each
instruction decoded.

J 0 8 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESlZABLE DESIGN

pd_des t ina t i on;

d_da ta <= ZERO;

WHEN MUL =>

- - M U L < s o u r c e l > , < s o u r c e 2 > , < d e s t i n a t i o n >

-- d_data again default to all zero

d_sourcel <= pd_sourcel;

d_source2 <= pd_source2;

d_destination <=

pd_des t ina t i on;

d_da ta <= ZERO;

WHEN CJE =>

- - C J E < s o u r c e l > , < s o u r c e 2 > , < d e s t i n a t i o n >

-- d_data default to all zero

d_sourcel <= pd_sourcel;

d_source2 <= pd_source2;

d_destination <=

pd_des t ina t i on ;

d_data <= ZERO;

WHEN LOAD =>

-- L O A D <value>, <dest inat ion>

-- d_data passes the data from predecode

-- b lock to execute block. < s o u r c e l > and

-- < s o u r c e 2 > are defaulted to reg0 they

-- are not used in this instruction.

d_data <= pd_data;

d_sourcel <= regO ;

d_source2 <= regO;

d_destination <=

pd_des t ina t i on;

WHEN READ =>

-- R E A D <dest inat ion>

- -<source 1> and < s o u r c e 2 > defaults to

-- reg0 as they are not used.

-- d_data default to all zero.

d_sourcel <= regO;

d_source2 <= regO;

d_destination <=

pd_destination;

d_data <= ZERO;

WHEN NO P =>

-- no operation, all outputs to default

- - value.

d_ sourcel <= regO ;

d_source2 <= regO ;

d_destination <= regO;

d_data <= ZERO;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER | 09

ELSE

WHEN OTHERS =>

NULL;

END CA SE ;

d_command <= command;

d_sourcel <= regO ;

d_source2 <= regO;

d_destination <= regO;

d_data <= ZERO;

d_command <= NOP;

END IF;

END IF;

END PROCESS;

END decode_arch;

Again, a testbench is written to simulate the design to ensure correct functionality.

When flush occurs, all
operations default to
NOP.

E X A M P L E 43 Example of Decode Block Testbench

LIBRARY IEEE;

USE IEEE. s td_i ogi c_l 164. ALL;

USE WORK. pipeline_package. ALL;

ENTITY decode_ tb_en t IS

END decode_ tb_en t;

ARCHITECTURE decode_ tb_arch OF decode_ tb_en t IS

COMPONENT decode__en t

PORT (

clock : IN std_logic;

command : IN command_ type;

pd_sourcel : IN register_type;

pd_source2 : IN register_type;

pd_destination : IN register_type;

pd-data : IN std_logic_vector (31 downto 0);

flush : IN std_logic;

d_command : OUT command- type;

d_destination : OUT register_type;

d-sourcel : OUT register_type;

d-source2 : OUT register_type;

d_data : OUT std_logic_vector (31 downto O)

);

END COMPONENT;

SIGNAL d_command : command_type;

| | ~ CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

d_destination : register_type;

d_sourcel : register_type;

d_source2 : register_type;

pd_sourcel : register_type;

pd_source2 : register_type;

clock : std_logic := '0';

pd_destination : register_type;

flush : std_logic;

command : command_ type;

pd_data : std-logic_vector (31 downto 0);

d_data : std_logic_vector (31 downto 0);

CONSTANT CYCLE : TIME := 50 ns;

BEGIN

DUT: decode_ent

port map(clock, command, pd_sourcel, pd_source2,

pd_destination, pd_data, flush, d_command,

d_destination, d_sourcel,

d_source2 , d_data) ;

cl ock <= NOT clock AFTER CYCLE~2;

PROCESS

BEGIN

flush <= '0';

wait for CYCLE;

-- load , # 1 0 0 5 1 , regO
command <= LOAD;

pd_destination <= regO;

pd_data <= "00000000000000010000000001010001";

wait for CYCLE;

-- load , #1 , regl
command <= LOAD;

pd_destination <= regl;

pd_data <= "00000000000000000000000000000001";

wait for CYCLE;

-- add regO, reg 1, reg2
command <= ADD;

pd_sourcel <= regO ;

pd_source2 <= regl;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER I I I

pd_destination <= reg2;

wait for CYCLE;

-- sub reg0, reg 1, reg3
command < = SUB;

pd_sourcel <= regO;

pd_source2 <= regl ;

pd_destination <= reg3;

wait for CYCLE;

END PROCESS;

END decode_ tb_arch;

CONFIGURATION decode_tb_config OF decode_tb_ent IS

FOR decode_ tb arch

FOR ALL : decode_ent

USE ENTITY WORK. decode_ent (decode_arch) ;

END FOR;

END FOR;

END decode_ tb_conf ig;

Testbench of Example 43 simulates decode block with the following instructions:

LOAD, #10051, regO

LOAD, #i, regl

A D D regO, regl, reg2

SUB regO, regl, reg3

clock

command

pd_sourcel

pd_source2

pd_destination

pddata

flush

d_c ommand

d_destination [3 : 0]

d_sourcel [3 : O]

d_source2 [3 : 0]

d_data [31 : O]

l I J I 1, 1 2 1 1 3 1 1 4 1 I ! [
.............. X ii 'LOAD X LOAD X ADD X SUB X

REG0

...X REG0 X REGI X

................... ~ R E G 0 X REGI X REG2 X REG3 ~

............ I I IZX oooloos, • ooooooo, • '

.X ,OAD X ,OAD X ADD X sub •

X R,::GO • REGI X REG2 X REC;3 •

'~ REG0

i X REGO • REG0 X REG, • REGI • ...

...X oooloosl X oooooool • oooooooo X

F I G U R E 50 Timing Waveform for Decode Block Testbench.

| J ~, CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

From Fig. 50:

1. At the rising edge of 1 st clock,
�9 f l u s h is at logical ' 0 '. No flushing should occur.
�9 d__.eommand drives LOAD since input command shows value LOAD.

�9 d _ d e s t i n a t i o n drives value shown by p a l _ d e s t i n a t i o n (r e g O) .

d _ s o u r e e l drives value shown by p d _ s o u r c e l (regO). d _ s o u r e e 2

drives value shown by p a l _ s o u r c e 2 (regO).

�9 d _ d a t a drives value ' 0 0 010 0 51 ' since input bus p d _ d a t a shows
value of ' 0 0 010 0 51 '.

�9 At the end of 1st clock, an instruction LOAD of value ' 0 0 010 0 51 ' into
register regO is decoded.

2. At the rising edge of 2 nd clock,
�9 f l u s h is at logical ' 0 '. No flushing should occur.
�9 d_destination drives value of regl since input pal_destination

changes to value regl.
�9 d_data changes to value ' 00000001 ' since input pd_data changes

from value of '00010051 ' to '00000001 '.
�9 At the end of the 2 nd clock, the instruction LOAD of data ' 00000001 '

into register regl is decoded.
3. At the rising edge of 3 th clock,

�9 f l u s h is at logical ' 0 '. No flushing should occur.
�9 d _ c o n n n a n d drives ADD since input command is at value ADD.
�9 d _ s o u r c e l drives value of regO since input p d _ s o u r c e l has value
of regO.

�9 d _ s o u r c e 2 drives value of r e g l since input p a l _ s o u r c e 2 has value
of regl.

�9 Since this instruction is ADD, d _ d a t a drives value of ' 0 0 0 0 0 0 0 0 '.
�9 The instruction at this cycle decodes to ADD contents of regO (designated

by p d _ s o u r c e l) with the contents of r e g l (as designated by
p a l _ s o u r c e 2) and the result to be stored in r e g 2 (designated by
p d _ d e s t i n a t i o n) .

4. At the rising edge of the 4 th clock,
�9 f l u s h is at logical '0'. No flushing should occur.
�9 d___ c o m m a n d drives value SOS (connnand has value of SOB).
�9 ; ,d__source / remains the same. d__source / shows no change.
�9 p a l _ s o u r c e 2 remains at r e g l . d _ s o u r c e 2 also remains at r e g l .

�9 d_destination drives value of r e g 3 since pd_destination
changes to value reg3.

�9 At the end of the 4 th clock cycle, instruction decodes to subtraction of

contents r e g l (as designated by p a l _ s o u r c e 2) from contents of regO

(as designated by ; , d _ s o u r c e /) and the result stored in r e g 3 (as
designated by pd_destination).

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER | I 3

6.4.3 Register File Block

This block is also part of the decode stage. It consists of sixteen 32-bit register desig-
nated regO to r e g l 5. Register file block interfaces with predecode block and exe-
cute block. It accepts signals from predecode block that indicate the need to read any
of its registers and drive the data within those registers to execute block.

Register file block also receives signals from execute block when an instruction
has been executed by execute block that needs to store data into any of the registers in
register file block. See Table 25 and Fig. 51 for description and diagram, respectively.

clock

pd_read

pd_sourcel

pd_source2

ex_des tination

ex_data

flush

REGISTER
FILE

sourcel_data

s o u r c e 2 _ d a t a

ex_store

FIGURE 51

Z
Diagram Showing the Interface Signals for the Register File Block.

TABLE 25

Signal name

clock

flush

pd_read

pd_sourcel

pal_source2

ex_store

ex_data

Description of Register File Block Interface Signals

I/O Description

Input Clock signal

Input When asserted to logical ' 1' register file block must default to
NOP.

Input When asserted to logical ' 1' the instruction being passed to
execute block is either a HOVE, ADD, StrB, I~IL, c o g or READ.
When this occurs, register file block must decode
pd_sourcel and pd_source2 inputs. The contents of the
registers indicated by p d _ s o u r c e l and p d _ s o u r c e 2 are
driven on s o u r c e l _ d a t a and s o u r c e l _ d a t a output.

Input The contents of register designated by pd_sourcel are to be
used as data for < s o u r c e 1 >.

Input The contents of register designated by pd_source2 are to be
used as data for < s o u r c e 2 > .

Input When asserted to logical ' 1', register file block must store
the data on e x _ d a C a bus into register indicated by
ex_destination.

Input Transfer data from execute block to register file block for
storage.

continued

[14 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

TABLE 25 continued

Signal name I/O Description

ex destination Input Indication of register to be used in register file block as a

destination for storing of data on e~_da ta bus when

e ~ _ s t o r e is asserted to logical ' 1'.

sourcel_data Output Output of contents of <sourcel >.

s o u r c e 2 _ d a t a Output Output of contents of < s o u r c e 2 >.

EXAMPLE 44 Example of Register File Block SynthesizableVHDL

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

USE WORK. pipel ine_package. ALL;

ENTITY register_file_ent IS

PORT (

pd_read : IN std_logic;

pd_sourcel : IN register_type;

pd_source2 : IN register_type;

clock : IN std_logic;

flush : IN std_logic;

ex_store : IN std_logic;

ex_destination : IN register_type;

ex_data : IN std_logic_vector (31 downto 0);

sourcel_data : OUT std_logic_vector (31 downto 0);

source2_data : OUT std_logic_vector (31 downto O)

);

END regis t er_ fi i e_ en t;

ARCHITECTURE register_file_arch OF register_file_ent IS

SIGNAL reg : array_si ze;

BEGIN

PROCESS (clock, flush, pd_read, pd_sourcel, pd_source2)

BEGIN

IF (clock = 'i' AND clock'EVENT) THEN

IF (flush = '0') THEN

IF (pd_read = 'i ') THEN

IF (pd_sourcel /= ex_destination)

THEN

CASE pd_sourcel IS

WHEN regO =>

sourcel_da ta <=

reg(O) ;

WHEN regl =>

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER | |

sourcel_da ta <=

reg (i) ;

WHEN reg2 =>

sourcel_da ta <=

reg (2) ;

WHEN reg3 =>

sourcel_da ta <=

reg(3) ;

WHEN reg4 =>

sourcel_da ta <=

reg(4) ;

WHEN reg5 =>

sourcel_da ta <=

reg(5) ;

WHEN reg6 =>

sourcel_da ta <=

reg(6) ;

WHEN reg7 =>

sourcel_da ta <=

reg(7) ;

WHEN reg8 =>

sourcel_da ta <=

reg(8) ;

WHEN reg9 =>

sourcel_da ta <=

reg (9) ;

WHEN regl 0 =>

sourcel_da ta <=

reg (I O) ;

WHEN regl i =>

sourcel_da ta <=

reg (i i) ;

WHEN regl2 =>

sourcel_da ta <=

reg (12) ;

WHEN regl 3 =>

sourcel_da ta <=

reg (13) ;

WHEN regl 4 =>

sourcel_da ta <=

reg(14) ;

WHEN regl 5 =>

sourcel_da ta <=

reg (15) ;

WHEN OTHERS =>

NULL;

END CA SE ;

Reading contents of
register indicated by
,pd_mourcel. Register
contents are driven
on mouz'ael_data

output.

I I 6 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

Reading values of
register indicated by
Z~_mouroe2. Register
contents are driven on
mource2_data

output.

ELSE

sourcel_data <= ex_data;

END IF;

IF (pd_source2 /= ex_destination)

THEN

CASE pd_source2 IS

WHEN regO =>

source2_data <=

reg(O) ;

WHEN regl =>

source2_da ta <=

reg (1) ;

WHEN reg2 =>

source2_da ta <=

reg (2) ;

WHEN reg3 =>

source2_data <=

reg(3) ;

WHEN reg4 =>

source2_data <=

reg (4) ;

WHEN reg5 =>

source2_data <=

reg (5) ;

WHEN reg6 =>

source2_da ta <=

reg (6) ;

WHEN reg7 =>

source2_data <=

reg(7) ;

WHEN reg8 =>

source2_data <=

reg (8) ;

WHEN reg9 =>

source2_data <=

reg (9) ;

WHEN regl 0 =>

source2_da ta <=

reg(lO) ;

WHEN regll =>

source2_data <=

reg (ii) ;

WHEN regl2 =>

source2_data <=

reg(12) ;

WHEN regl3 =>

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER | | 7

ELSE

source2_data <=

reg (13) ;

WHEN regl 4 =>

source2_data <=

reg(14) ;

WHEN regl 5 =>

source2_data <=

reg(15) ;

WHEN OTHERS =>

NULL;

END CASE;

source2_data <= ex_data;

END IF;

END IF;

IF (ex_store = 'I') THEN

CASE ex_destination IS

WHEN regO =>

reg(O) <= ex_data;

WHEN regl =>

reg(1) <= ex_data;

WHEN reg2 =>

reg (2) <= ex_da ta;

WHEN reg3 =>

reg (3) <= ex_da ta;

WHEN reg4 =>

reg(4) <= ex_data;

WHEN reg5 =>

reg(5) <= ex_data;

WHEN reg6 =>

reg (6) <= ex_da ta;

WHEN reg7 =>

reg(7) <= ex_data;

WHEN reg8 =>

reg(8) <= ex_data;

WHEN reg9 =>

reg(9) <= ex_data;

WHEN regl 0 =>

reg(lO) <= ex_data;

WHEN regl i =>

reg(ll) <= ex_data;

WHEN regl2 =>

reg(12) <= ex_data;

WHEN regl3 =>

reg(13) <= ex_data;

WHEN regl 4 =>

When ex mt:oz'e is
asserted to Iogical'l'
data on ex_d~ca
bus are written into
register indicated by
e x _ d e m t ~ : Ina t: :~ on .

oJ~z statement is
used to infer multi-
plexers, z r statement
is not used as it
would infer priority
encoders.

J J 8 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

8ourcel_data

and source2_data
default to zero when
flushing.

ELSE

reg(14) <= ex_data;

WHEN regl 5 =>

reg(15) <= ex_data;

WHEN OTHERS =>

NULL;

END CA SE ;

END IF;

sourcel_data <= ZERO;

source2_data <= ZERO;

END IF;

END IF;

END PROCESS;

END regis t er_ fi I e_arch;

A testbench is written to simulate the code for the register file block.

EXAMPLE 45 Example of Register File SynthesizableVHDL

LIBRARY IEEE ;

USE IEEE. std_logic_l164. ALL;

USE WORK. pipel ine_package. ALL;

ENTITY register_file_tb_ent IS

END regis t er_ fi i e_ tb_ en t;

ARCHITECTURE register_file_tb_arch OF register_file_tb_ent IS

COMPONENT regis t er_ f i i e_ en t

PORT (

pd_read : IN std_logic;

pd_sourcel : IN register_type;

pd_source2 : IN register_type;

clock : IN std_logic;

flush : IN std_logic;

ex_store : IN std_logic;

ex_destination : IN register_type;

ex_data : IN std_logic_vector (31 downto 0);

sourcel_data : OUT std_logic_vector (31 downto 0);

source2_data : OUT std_logic_vector (31 downto O)

);

END COMPONENT;

SIGNAL pd_read : std_logic;

SIGNAL pd_sourcel : register_type;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER I I

SIGNAL pd_source2 : register_type;

SIGNAL clock : std_logic := '0';

SIGNAL flush : std_logic;

SIGNAL ex_store : std_logic;

SIGNAL ex_destination : register_type;

SIGNAL ex_data : std_logic_vector (31 downto 0);

SIGNAL sourcel_data : std_logic_vector (31 downto 0);

SIGNAL source2_data : std_logic_vector (31 downto 0);

CONSTANT CYCLE : TIME := 50 ns;

BEGIN

DUT: register_file_ent port map(pd_read, pd_sourcel, pd_source2,

clock, flush, ex_store,

ex_destination, ex_data,

sourcel_data, source2_data) ;

clock <= NOT clock AFTER CYCLE~2;

PROCESS

BEGIN

- - set default to 0
flush <= '0';

pd_read <= '0' ;

pd_sourcel <= regO ;

pd_source2 <= regO ;

ex_store <= '0';

ex_destination <= regO;

ex_data <= ZERO;

wait for CYCLE;

- - l o a d , # 1 0 0 5 1 , regO
ex_store <= 'i';

ex_destination <= regO;

ex_data <= "00000000000000010000000001010001";

wait for CYCLE;

- - l o a d , # 1 , reg 1
ex_store <= 'i';

ex_destination <= regl;

ex_data <= "00000000000000000000000000000001";

wait for CYCLE;

-- add regO, reg 1, reg2
-- reading values of regO and reg 1

12.0 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

ex_store <= '0';

pd_read <= 'i ' ;

pd_sourcel <= regO ;

pd_source2 <= regl ;

wait for CYCLE;

-- sub reg0, reg 1, reg3
- - reading values of reg0 and reg 1
ex_store <= '0';

pd_read <= 'I';

pd_sourcel <= regO ;

pd_source2 <= regl ;

wait for CYCLE;

END PROCESS;

END regi s t er_fi i e_ tb_arch;

CONFIGURATION register_file_tb_config OF register_file_tb_ent IS

FOR regi s t er_ fi i e_ tb_arch

FOR ALL : regis t er_ fi i e_en t

USE ENTITY WORK. register_file_ent (register_file_arch) ;

END FOR;

END FOR;

END regis t er_ fi i e_ tb_ con fig;

The timing waveform for the simulation results of Example 45 is shown in Fig. 52.

clock

pd_read

pd_sourcel

pd_source2

flush

ex_store

exdestination

ex_data [31 : O]

sourcel_data [31 : 0]

source2_data[31:O]

regO [31 : O]

regl [31: O]

~ J I ~ 1 I I I ~ I 13 1 1 4 l I s l F
\ I \...
X REG0 X

• REGO X REG, X
................... X

~ I I /
X REGO X REG, X
X oooooooo X ooo,oos, • ooooooo, •

X 00010051

X ooooooo,

7 00010051

... X ooo0oo01

FIGURE 52 Timing Diagram Showing the Simulation for the Register File Testbench.

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER 121

From Fig. 52:

1. At the rising edge of the 1 st clock,

�9 g 2 u s h is at logical ' 0 ' . No flushing should occur.

�9 p a l _ r e a d is at logical ' 0 ' . Reading of register contents is not required.

�9 Input value of p d _ _ s o u r e e l and p d _ _ s o u r e e 2 is ignored since p a l _ r e a d
is at logical ' 0 ' .

�9 e x _ s t : o r e is at logical ' 0 ' . Writ ing of data into registers is not required.
2. At the rising edge of the 2 nd clock,

�9 g 2 u s h is at logical ' 0 ' . No flushing should occur.

�9 e x _ s t o r e is at logical ' 1 ' . e x _ d a t a shows value of ' 0 0 0 1 0 0 5 1 ' .

e x _ d e s e i n a e i o n shows value of z-eg0. This is decoded to storing of

data ' 0 0 0 1 0 0 51 ' from e x _ d a e a bus into register r e g 0 as indicated by

ex destination.

�9 At the next rising edge of clock, the content of regO changes to

'00010051 ' .

3. At the rising edge of the 3 rd clock,

�9 e x _ s e o r e is at logical ' 1 ' . e x _ d e s t i n a e i o n shows value of r e g l .
e x _ d a e a shows value of ' 0 0 0 0 0 0 01 ' .

�9 This is decoded to an event of storing data ' 0 0 0 0 0 0 01 ' from e x _ d a t a
bus into register r e g l as designated by e x _ d e s e i n a e i o n .

�9 At the next rising edge of clock, the content of r e g l changes to

' 00000001 ' .

4. At the rising edge of the 4 tn clock,

�9 e x _ s t o r e is at logical ' 0 ' .

�9 1) d r e a d is at logical ' 1 ' . p d s o u r c e l and p d s o u r c e 2 show value

of regO and r e g l . This decodes to reading of regO and r e g l and driving

the contents of those registers on s o u r e e l d a e a and s o u r c e 2 _ _ d a t a
output.

6.4.4 Execute Block

This block represents the execute stage of the pipeline. This is also the block that exe-

cutes the instructions. For example, the contents of < z o u r c e 2 > and < s o u r c e 2 >
are added in this block for an ADD instruction. The results are sent to register file
block and stored into the register designated by < d e s e / n a t / o n > .

TABLE 26 Description of Execute Block Interface Signals

Signal Name I/O Description

d_command Input Command line input to indicate which instruction is to be exe-
cuted. It is of type command_ type and can be any of HOVE,
ADD, SUB, MUL, CJE, LOAD, READ or NOP.

d_source1_data Input 32 bits input to pass data from register file block to execute
block. The data on this bus are only valid for ADD, SrIB, t4-O'Z
and CJ'E where contents of registers in register file block are
read and passed to execute block.

122 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

TABLE 26

Signal Name

continued

Description of Execute Block Interface Signals

I/O Description

d_source2_data Input 32 bits input to pass data from register file block to execute
block. The data on this bus are only valid for &DD, StrB, I~'L,
and CJE where contents of registers in register file block are
read and passed to execute block.

d_des t ina t i on Input This signal is of type r e g i s t e r - t y p e and can be any one of
regO, regl, reg2, reg3, reg4, reg5, reg6, reg7,
reg8, reg9, regl O, regll, regl2, regl3, regl4 or
regl 5.

d_source/ Input This signal is of type r e g i s t e r - t y p e and can be any one of
regO, regl, reg2, reg3, reg4, reg5, reg6, reg7,
reg8, reg9, regl O, regl I, regl 2, regl 3, regl 4 or
regl 5.

d_mource2 Input This signal is of type r e g i s t e r - t y p e and can be any one of
regO, regl, reg2, reg3, reg4, reg5, reg6, reg7,
reg8, reg9, regl O, regl I, regl 2, regl 3, regl 4 or
regl5.

d_data Input 32 bits data bus that passes data from decode block to execute
block. It is only valid during LOAD instruction.

clock Input Clock signal.

flumh Output Asserted to logical '1' when a branch occurs. When other
blocks see this signal going at logical '1' they must flush all
existing instructions in the pipeline

Jum~p Output Asserted to logical ' 1' when a branch occurs. It is used as an
indicator to the external instruction module that a branch is to
occur.

ex_data Output 32-bit-data bus that passes results of the arithmetic operation
performed by execute block to register file block for storage.

ex_store Output Asserted to logical ' 1' for indication to register file block to
store data on e x _ d a t a bus into register designated by
ex_destination.

e x _ d e s t i n a t i o n Output This signal is of type r e g i s t e r - - t y p e and can be any of
regO, r e g l , r eg2 , r eg3 , r eg4 , r eg5 , r eg6 , r eg7 ,
r eg8 , r eg9 , r e g l O, r e g l 1, r e g l 2 , r e g l 3, r e g l 4 or
r e g l 5 . It indicates to register file block on register to use for
storage of data from e x _ d a ta bus.

ouCput; Output This is the output of execute block. During a
<des t i n a t i on> instruction, the contents of register
designated by < d e s t i n a t i on> are driven on this
output bus.

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER 123

clock

d_command

d_sourcel_data
r

d_source2_data

d_destination

ddata

d sourcel
r

EXCUTE

flush

j ump

ex_data
r

output
v

exstore

ex_destination

d_source2

FIGURE 53 Diagram Showing the Interface Signal of Execute Block

EXAMPLE 46 Example of Execute Block SynthesizableVHDL

LIBRAR Y IEEE;

USE IEEE. std_logic_l164. ALL;

USE IEEE. std_logic_ari th.ALL;

USE WORK. pipel ine__package. ALL;

ENTITY execute_ent IS

PORT (

d_command : IN command_ type;

d_sourcel_data : IN std_logic_vector (31 downto 0);

d_source2 data : IN std_logic_vector (31 downto 0);

d_destination : IN register_type;

d_sourcel : IN register_type;

d_source2 : IN register_type;

d_data : IN std_logic_vector (31 downto 0);

clock : IN std-logic;

flush : OUT std_logic;

jump : OUT std_logic;

ex_data : OUT std_logic_vector (31 downto 0);

ex_destination : OUT register_type;

ex_store : OUT std_logic;

output : OUT std_logic_vector (31 downto 0)

);

END execu te_en t;

ARCHITECTURE execute_arch OF execute_ent IS

SIGNAL int_ex_destination �9 register_type := regO;

SIGNAL int_ex_data : std_logic_vector (31 downto 0);

SIGNAL int d sourcel_data : std_logic_vector (31 downto 0);

SIGNAL int d source2_data : std_logic_vector (31 downto 0);

I ~-4 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

Refer to Note
on p. 126

BEGIN

PROCESS (d_command, int_ex_destination, d_sourcel,

d_source2, int_d_sourcel_data,

int d source2_data, d_sourcel_data, d_source2_data,

in t_ex_da ta)

BEGIN

IF (d_command = LOAD OR d_command = MOVE OR d_command

= NOP) THEN

int d sourcel_data <= d_sourcel_data;

int d source2_data <= d_source2_data;

ELSE

IF (int_ex_destination = d_sourcel) THEN

int_d_sourcel_data <= int_ex_da ta;

int d source2_data <= d_source2_data;

ELSIF (int_ex_destination = d_source2) THEN

int d source2_data <= int_ex_data;

int d sourcel_data <= d_sourcel_data;

ELSE

int d sourcel_data <= d_sourcel_data;

int d source2_data <= d_source2_data;

END IF;

END IF;

END PROCESS;

PROCESS (clock, d_command, int d sourcel_data,

int d source2_data, d_destination, d_sourcel,

d_source2, int_ex_data, d_data)

BEGIN

IF (clock = 'i' AND clock'EVENT) THEN

CASE d_command IS

WHEN MOVE =>

int_ex_data <= int d sourcel_data;

int_ex_destination <=

d_destination;

ex_store <= 'I';

jump <= '0';

output <= ZERO;

flush <= '0';

WHEN ADD =>

- - both MSB of src 1 and src2 cannot

-- be '1'. if it is then overflow.
in t_ex_da ta <=

signed (int d sourcel_data) +

signed (int_d_source2_data) ;

in t_ex_des tina tion <=

d_destination;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER | ~-5

ex_store <= 'i ' ;

jump <= '0';

flush <= '0';

output <= ZERO;

WHEN SUB =>

int_ex_data <= signed(int d sourcel_data)-

signed (int d source2_data) ;

int_ex_destination <=

d_des tina ti on;

ex_store <= 'i';

jump < = '0';

flush <= '0';

output <= ZERO;

WHEN MUL =>

- - both src 1 and src2 must be m a x

-- 16 bits long

-- i f not wil l overf low

- - e x c e s s of 16 bits is truncated

int_ex_data <=

signed (int d sourcel_data (15

downto O)) *

signed (int d source2_data (15

downto 0)) ;

int_ex_destination <=

d_destination;

ex_store <= 'i';

jump <= ' 0 ' ;

flush <= '0';

output <= ZERO;

WHEN CJE =>

IF (int d sourcel_data =

int d source2_data) THEN

jump <= 'i';

flush <= 'i';

ELSE

j u m p < = ' 0 ' ;

flush < = '0';

END IF;

ex_store <= '0';

output <= ZERO;

WHEN LOAD =>

int_ex_destination <=

d_destination;

int_ex_data <= d_data;

ex_store <= 'i ';

output <= ZERO;

Signal assignment for
each instruction

I ~-~ CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

jump <= '0';

flush <= '0';

WHEN READ =>

output <= int d sourcel_data;

ex_store <= '0';

flush <= '0';

jump < = ' 0 ' ;

WHEN NOP =>

output <= ZERO;

flush <= '0';

jump < = ' 0 ' ;

ex_store <= '0';

WHEN OTHERS =>

NULL;

END CASE;

END IF;

END PROCESS;

ex_da ta < = in t_ex_da ta;

ex_destination <= int_ex_destination;

END execute_arch;

Note: From execute block code, the first process checks for instruction signal
d__eonnnand to ensure that it is of type aF_m~, ADD, SOB, HO'Z or C, rg. This check-
ing is done for implementation of a feature called ' n x e e u e a b y p a s s i n g ' that is
common to most pipeline designs.

If the instruction going into execute block is RF_,aD, ADD, SOB, t,m'z or Co"g, the
inputs to the multiplier/adder/subtractor/comparator must be bypassed. In other
words, the output of execute block must be used for the input and not the output of
register file block.

Both instructions hav-
ing dependence on
register regl.

Execute bypassing is a pipeline solution when two consecutive instructions exe-
cuted by a pipeline design are dependent on each other.

For example, let us say we have the following instructions"

Inst (i) LOAD #52, regO

~ Inst (2) LOAD #02, regl

Inst (3) ADD regO regl, reg2

At the end of instruction (2), before execute block can complete this instruction
and write the data #02 into r e g 2 in register file block, the data needed for the execu-
tion of instruction (2) have already been passed to execute block. Therefore the data

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER 127

of regl passed to execute block on the third instruction are the contents of reg2
before execute block is able to store the value of #02 into r e g 2 register. In other
words, the third instruction will perform an addition on the wrong contents of reg2 .

The solution to this problem is to use a concept called 'execute bypassing'. In this
concept, execute block is 'informed' in advance that there is dependence on the sec-
ond and third instruction. It will therefore use the contents of output e x _ d a e a and
not the 'outdated' data from register file block.

Assuming the initial contents of regO = O, regl = 1 and reg2 = 2 (without 'execute
bypassing'):

Initial value

executed

regO 0

regl 1

reg2 2

After 1 st instruction After 2 nd instruction After 3 rd instruction

executed executed

~ ~ ~ _ 52 52

2

The outdated data of regl (1) is used for addition with data of regO (52). Result
without using 'execute bypassing' is 53 and not the correct value of 54.

Now the same instructions go through the pipeline but this time with 'execute
bypassing"

regO

regl

reg2 2

Initial value

executed

After 1 st instruction After 2 nd instruction After 3 rd instruction

executed executed

~~ 52 52

With 'execute bypassing', the output of second instruction (LOAD #2, regl) is
used as the input for the addition instead of reading outdated data from r e g l .

The first process of Example 46 describes the functionality required to perform
'execute bypassing'.

Figure 54 is a block diagram showing the interface signals for execute block.

128 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

EXCUTE

d_source2

flush

jump

ex_data

output

ex_store

ex_destination

FIGURE 54 Diagram Showing Interface Signals for Execute Block.

clock

d_command

d_sourcel_data

d _ s o u r c e 2 _ d a t a ?.
d _ d e s t i n a t i o n

d d a t a
d _ s o u r c e l

v

A testbench is written to check the functionality of the code for e x e c u t e block as
shown in Example 46.

EXAMPLE 47 Example of Execute Block Testbench for
Functionality Check

LIBRARY IEEE;

USE IEEE. std_logic_l164 .ALL;

USE WORK. pipel ine_package. ALL;

ENTITY execute_tb_ent IS

END execute_ tb_en t;

ARCHITECTURE execute_tb_arch OF execute_tb_ent IS

COMPONENT execu te_en t

PORT (

d_command : IN command_ type;

d_sourcel_data : IN std_logic_vector (31 downto 0);

d_source2_data : IN std-logic_vector (31 downto 0);

d-destination : IN register_type;

d_sourcel : IN register_type;

d_source2 : IN register_type;

d_data : IN std_logic_vector (31 downto 0);

clock : IN std_logic;

flush : OUT std_logic;

jump : OUT std_logic;

ex_data : OUT std_logic_vector (31 downto 0);

ex_destination : OUT register_type;

ex_store : OUT std_logic;

output : OUT std_logic_vector (31 downto O)

);

END COMPONENT;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER I ~-~

SIGNAL ex_data : std_logic_vector (31 downto 0);

SIGNAL ex_destination : register_type;

SIGNAL ex_store : std_logic;

SIGNAL d_command : command_type;

SIGNAL d_sourcel_data : std_logic_vector (31 downto 0);

SIGNAL d_source2_data : std_logic_vector (31 downto 0);

SIGNAL d_destination : register_type;

SIGNAL d_sourcel : register_type;

SIGNAL d_source2 : register_type;

SIGNAL clock : std_logic := '0';

SIGNAL fl ush : s td_l ogi c;

SIGNAL jump : std_logic;

SIGNAL output : std_logic_vector (31 downto 0);

SIGNAL d_data : std_logic_vector (31 downto 0);

CONSTANT CYCLE : TIME := 50 ns;

BEGIN

DUT: execute_ent port map(d_command, d_sourcel_data,

d_source2_data, d_destination,

d_sourcel, d_source2, d_data, clock,

flush, jump, ex_data, ex_destination,

ex_s tore, ou tpu t) ;

clock <= NOT clock AFTER CYCLE~2;

PROCESS

BEGIN

wait for CYCLE;

-- load, #51, regO

d_command <= LOAD;

d_destination <= regO;

d_data <= "00000000000000000000000001010001";

wai t for CYCLE;

- - load, #1, reg 1
d_command <= LOAD;

d_destination <= regl ;

d_data <= "00000000000000000000000000000001";

wait for CYCLE;

-- add regO, reg 1, reg2

I ~ CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

d_command <= ADD;

d_sourcel <= regO ;

d_source2 <= regl ;

d_destination <= reg2;

d_sourcel_data <= "00000000000000000000000001010001";

d_source2_data <= "00000000000000000000000000000001";

wait for CYCLE;

-- sub reg0, reg 1, reg3
d_command <= SUB;

d_sourcel <= regO ;

d_source2 <= regl;

d_destination <= reg3;

d_sourcel_data <= "00000000000000000000000001010001";

d_source2_data <= "00000000000000000000000000000001";

wai t for CYCLE;

END PROCESS;

END execute_ tb_arch;

CONFIGURATION execute_tb_config OF execute_tb_ent IS

FOR execute_ tb_arch

FOR ALL : execute_ent

USE ENTITY WORK. execute_ent (execute_arch) ;

END FOR;

END FOR;

END execute_tb_config;

c~.o~k ~ I i 1 ~ I w I I-~ 1 [~ 1 I ~
d_ c~ X t.oAo X ,oAt:, X A,:,o X sub X
d_sourcel_data [31 : 0] ... X 00000051 X

d_source2_data t3 i: 0] ... ~ 00000001 X

d_destination X REG0 X REGI X REG2 X REG3 X

d_ 1 X REG0 ~

d__ 2 X REG0 X REGI X

d_data [31 : 0] X 00000051 X 00000001 X

~us~ k /

jump ~ /

ex_data{31:0} X 00000051 X 0000000l X 00000052 X 00000050 X

ex_destination X REG0 X REGI X REG2 X REG] X

.... tore / k

output t31:01)< 00000000)~

FIGURE 55 Timing Waveform Showing the Testbench for Execute Block.

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER J ~ |

From Fig. 55"

1. At the rising edge of the 1st clock,

�9 f 2 u s h is asserted to logical ' 0 ' . No flushing should occur.
�9 j u m p is asserted to logical ' 0 ' as the instruction at d__eonnnand is LOAD.

�9 o u t p u e is driven with value ' 0 0 0 0 0 0 0 0 ' as the instruction being exe-
cuted is LOAD and not am%D.

�9 d _ _ d e s e i n a e i o n has a value of r e g 0 . Since this is a LOAD command,
e x _ s t o r e is asserted to logical ' 1 ' and e x _ d a t a is driven with value
from input bus d__data (' 0 0 0 0 0 0 5 1 ').

�9 ex_destination is asserted with value r e g O because d_destination
shows value of regO. Register file block will use the value on
e x _ d e s e i n a e i o n to determine in which register to store e x _ d a e a .

�9 This decodes to storing of data ' 0 0 0 0 0 0 5 1 ' (indicated by d__daea) into
r e g O as designated by d_deseinaeioa.

2. At the rising edge of the 2 nd clock,

�9 f l u s h is asserted to logical ' 0 ' . No flushing should occur.

�9 j u m p is asserted to logical ' 0 ' since instruction at d__command is L O A n

�9 e x _ s e o r e is asserted to logical ' 1 ' . e x _ d a t : a asserts value of

'00000001' which is the value at input d__daea.

�9 ex_destination asserts value regl because d_destination is
showing value r e g l .

�9 This decodes to LOAD instruction of ' 0 0 0 0 0 0 0 1 ' (as indicated by
d_data bus) into r e g l (as designated by d_destination).

3. At the rising edge of the 3 rd clock,

�9 g 2 u s h is asserted to logical ' 0 ' . No flushing should occur.
�9 d_command shows value ADD. d_soureel shows regO and
d_source2 shows regl while d_destination shows reg2. This
decodes to an addition of r e g 0 and r e g 2 , with the result stored into
reg2.

�9 ex_store is asserted to logical ' 1 '. ex_data drives value of
'00000052' ('00000051' + 'O0000001')onex_databus.

�9 ex_destination drives value reg2 to indicate that the result is to be
stored in register reg2.

4. At the rising edge of the 4 th clock,
�9 g 2 u s h is asserted to logical ' 0 ' . No flushing should occur.
�9 d _ e o n m m n d shows value of sryB, which indicates that a sra-B command is

to be executed.

�9 d_sourcel shows value of regO and d_source2 shows value of regl
while d_destination shows value of reg3.

�9 This decodes to subtraction of regl (as indicated by d_source2) from

r e g O (as indicated by d _ _ s o u r c a l) and the results of the operation to be
stored in r e g 3 .

�9 e x _ s t o r e is asserted to logical ' 1 ' while a x _ d a t a drives

' 0 0 0 0 0 0 5 0 ' (' 0 0 0 0 0 0 5 2 ' - ' 0 0 0 0 0 0 0 1 ') on e x _ d a t a b u s .

�9 e x _ d e s e i n a e i o n drives value r e g 3 , which indicates to register file

block that the data on e x _ d a e a bus is to be stored into register r e g 3 .

132 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZ_ABLE DESIGN

6.4.5 Fullchip Microcontroller

In order to obtain fullchip for the pipeline microcontroller, the four different blocks
are instantiated and connected as shown in Fig. 46.

EXAMPLE 48 Synthesizable Code of Fullchip Microcontroller

LIBRARY IEEE ;

USE IEEE. std_logic_l164. ALL;

USE WORK. pipel ine__package. ALL;

ENTITY mi croc_en t IS

PORT (

clock : IN std_logic;

inst : IN std_logic_vector (2 downto 0);

sourcel : IN std-logic_vector (3 downto 0);

source2 : IN std-logic_vector (3 downto 0);

destination : IN std_logic_vector (3 downto 0);

data : IN std_logic_vector (31 downto 0);

jump : OUT std_logic;

output : OUT std_logic_vector (31 downto O)

);

END mi croc_en t;

ARCHITECTURE microc_arch OF microc_ent IS

COMPONENT execute_ent

PORT (

d_command : IN command_ type;

d_sourcel_data : IN std_logic_vector (31 downto 0);

d_source2_data : IN std_logic_vector (31 downto 0);

d_destination : IN register_type;

d_sourcel : IN register_type;

d_source2 : IN register_type;

d-data : IN std_logic_vector (31 downto 0);

clock : IN std_logic;

flush : OUT std_logic;

jump : OUT std_logic;

ex_data : OUT std-logic_vector (31 downto 0);

ex_destination : OUT register_type;

ex_store : OUT std_logic;

output : OUT std_logic_vector (31 downto O)

);

END COMPONENT;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER ~ 3 3

COMPONENT regis ter_f i I e_en t

PORT (

pd_read : IN std_logic;

pd_sourcel : IN register_type;

pd_source2 : IN register_type;

clock : IN std_logic;

flush : IN std_logic;

ex_store : IN std_logic;

ex_destination : IN register_type;

ex_data : IN std_logic_vector (31 downto 0);

sourcel_data : OUT std_logic_vector (31 downto 0);

source2_data : OUT std_logic_vector (31 downto O)

);

END COMPONENT;

COMPONENT decode_ent

PORT (

clock : IN std_logic;

command : IN command- type;

pd_sourcel : IN register_type;

pd-source2 : IN register_type;

pd_destination : IN register_type;

pd_data : IN std-logic_vector (31 downto 0);

flush : IN std_logic;

d-command : OUT command-type;

d-destination : OUT register_type;

d-sourcel : OUT register_type;

d_source2 : OUT register_type;

d_data : OUT std_logic_vector (31 downto O)

);

END COMPONENT;

COMPONENT predecode_en t

PORT (

clock : IN std_logic;

inst : IN std_logic_vector (2 downto 0);

sourcel : IN std_logic_vector (3 downto 0);

source2 : IN std_logic_vector (3 downto 0);

destination : IN std_logic_vector (3 downto 0);

data : IN std_logic_vector (31 downto 0);

flush : IN std_logic;

command : OUT command_ type;

pd_sourcel : OUT register_type;

pd-source2 : OUT register_type;

pd_destination : OUT register_type;

~ 4 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

pd_data : OUT std_logic_vector (31 downto 0);

pd_read : OUT std_logic

);

END COMPONENT;

SIGNAL sig_clock : std_logic;

SIGNAL sig_inst : std_logic_vector (2 downto 0);

SIGNAL sig_sourcel : std_logic_vector (3 downto 0);

SIGNAL sig_source2 : std_logic_vector (3 downto 0);

SIGNAL sig_destination : std_logic_vector (3 downto 0);

SIGNAL sig_data : std_logic_vector (31 downto 0);

SIGNAL sig_jump : std_logic;

SIGNAL sig_output : std_logic_vector (31 downto 0);

SIGNAL sig_flush : std_logic;

SIGNAL sig_command : command_type;

SIGNAL sig__pd_sourcel : register_type;

SIGNAL sig_pd_source2 : register_type;

SIGNAL sig_pd_destination : register_type;

SIGNAL sig_pd_data : std_logic_vector (31 downto 0);

SIGNAL sig_ex_data : std_logic_vector (31 downto 0);

SIGNAL sig_ex_destination : register_type;

SIGNAL sig_ex_store : std_logic;

SIGNAL sig_d_command : command_type;

SIGNAL sig_d_sourcel_data : std_logic_vector (31 downto 0);

SIGNAL sig_d_source2_data : std_logic_vector (31 downto 0);

SIGNAL sig_d__destination : register_type;

SIGNAL sig_d_sourcel : register_type;

SIGNAL sig_d_source2 : register_type;

SIGNAL sig_pd_read : std_logic;

SIGNAL sig_d_data : std_logic_vector (31 downto 0);

BEGIN

DUT_predecode : predecode_ent PORT MAP (

clock => sig_clock,

inst => sig_inst,

sourcel => sig_sourcel,

source2 => sig_source2,

destination => sig_destination,

data => sig_data,

flush => sig_flush,

command => sig_command,

pd_sourcel => sig__pd_sourcel,

pd_source2 => sig_pd_source2,

pd_destination =>

si g_pd_des tina ti on,

pd_data => sig_pd_data,

pd_read => sig_pd_read) ;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER | ~ 5

DUT_decode: decode_ent PORT MAP (

clock => sig_clock,

command => sig_command,

pd_sourcel => sig_pd_sourcel,

pd_source2 => sig_lod_source2,

pd_destination =>

s i g_pd_des t ina t i on,

pd_da ta => sig_pd_da ta,

flush => sig_flush,

d_command => sig. d command,

d_destination => sig. d destination,

d_sourcel => sig. d sourcel,

d_source2 => sig_d_source2,

d_data => sig_d_data) ;

DUT_regi s t er_ f i i e: register_file_ent PORT MAP (

pd_read => sig_lod_read,

pd_sourcel => sig_pd_sourcel,

pd_source2 => sig_pd_source2,

clock => sig_clock,

flush => sig_flush,

ex_store => sig_ex_store,

ex_destination =>

si g_ex_des tina ti on,

ex_data => sig_ex_data,

sourcel_data => sig_d_sourcel_data,

source2_da ta =>

sig. d source2_data) ;

DUT_execute: execu te_en t PORT MAP (

d_command => sig. d command,

d_sourcel_da ta =>

sig. d sourcel_data,

d_source2_data =>

sig_d_source2_da ta,

d_destination => sig. d destination,

d_sourcel => sig_d_sourcel,

d_source2 => sig_d_source2,

d_data => sig_d_data,

clock => sig_clock,

flush => sig_flush,

jump => s i g_j ump ,

ex_data => sig_ex_data,

ex_des tina tion =>

si g_ex_des tina ti on,

ex_store => sig_ex_store,

output => sig_output);

136 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

slg_clock <= clock;

slg_inst <= inst ;

slg_sourcel <= sourcel ;

slg_source2 <= source2;

slg_destination <= destination;

slg_data <= data;

jump <= sig_jump;

output <= sig_output;

END mi croc_arch ;

CONFIGURATION microc config OF microc_ent IS

FOR mi croc_arch

FOR ALL: predecode_ent

USE ENTITY WORK.predecode_ent (predecode_arch) ;

END FOR;

FOR ALL: decode_en t

USE ENTITY WORK. decode_ent (decode_arch) ;

END FOR;

FOR ALL: register_file_ent

USE ENTITY

WORK. regi s t er_ fi i e_ en t (regis t er_ fi i e_arch) ;

END FOR;

FOR ALL: execute_ent

USE ENTITY WORK. execute_ent (execute_arch) ;

END FOR;

END FOR;

END mi croc_config;

A testbench is written to check the functionality of the microcontroller.

EXAMPLE 49 Example of Microcontroller Testbench

LIBRARY IEEE;

USE IEEE. std_logic_l164 .ALL;

ENTITY mi croc_ tb_en t IS

PORT (

clock : IN std_logic;

inst : IN std_logic_vector (2 downto 0);

sourcel : IN std_logic_vector (3 downto 0);

source2 : IN std_logic_vector (3 downto 0);

destination : IN std_logic_vector (3 downto 0);

data : IN std_logic_vector (31 downto 0);

jump : OUT std_logic;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER I 3

output : OUT std_logic_vector (31 downto O)

);

END microc_tb_ent ;

ARCHITECTURE mi croc_ tb_arch OF mi croc_ tb_en t IS

COMPONENT mi croc_en t

PORT (

clock : IN std_logic;

inst : IN std_logic_vector (2 downto 0);

sourcel : IN std_logic_vector (3 downto 0);

source2 �9 IN std_logic_vector (3 downto 0);

destination : IN std_logic_vector (3 downto 0);

data : IN std_logic_vector (31 downto 0);

jump : OUT std_logic;

output : OUT std_logic_vector (31 downto 0)

);

END COMPONENT;

SIGNAL sig_clock : std_logic := ' 0 ' ;

SIGNAL sig_inst : std_logic_vector (2 downto O);

SIGNAL sig_sourcel : std_logic_vector (3 downto 0);

SIGNAL sig_source2 : std_logic_vector (3 downto 0);

SIGNAL sig_destination : std_logic_vector (3 downto 0);

SIGNAL sig_data : std_logic_vector (31 downto 0);

SIGNAL sig_jump : std_logic;

SIGNAL sig_output : std_logic_vector (31 downto 0);

CONSTANT CYCLE : TIME := 50 ns;

CONSTANT ZERO : std_logic_vector (31 downto O) "=

"00000000000000000000000000000000";

BEGIN

sig_clock <= NOT sig_clock AFTER CYCLE~2;

DUT_microc: microc_ent PORT MAP (clock => sig_clock,

inst => sig inst,

sourcel => sig_sourcel,

source2 => sig_source2,

destination => sig_destination,

data => sig_data,

jump => sig_jump,

output => sig_output) ;

PROCESS

| ~ CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

BEGIN

- - load #51, regO
sig_inst <= "I01";

sig_sourcel <= "0000 ";

sig_source2 <= "0000";

sig_destination <= "0000";

sig_data <= "00000000000000000000000001010001";

wait for 2 *CYCLE;

- - load #02, reg 1
sig_inst <= "101";

sig_sourcel <= "0000";

sig_source2 <= "0000";

sig_destination <= "0001";

sig_data <= "00000000000000000000000000000010";

wait for CYCLE;

- - add regO, reg 1, reg2
sig_inst <= "001";

sig_sourcel <= "0000";

sig_source2 <= "0001 ";

sig_destination <= "0010";

sig_data <= ZERO;

wai t for CYCLE;

- - sub regO, reg 1, reg3
sig_inst <= "010";

sig_sourcel <= "0000";

sig_source2 <= "0001";

sig_destination <= "0011";

sig_data <= ZERO;

wait for CYCLE;

- - mul regO, reg 1, reg4
sig_inst <= "011";

sig_sourcel <= "0000";

sig_source2 <= "0001 ";

sig_destination <= "0100";

sig_data <= ZERO;

wait for CYCLE;

- - mov reg 1, reg5
sig_inst <= "000";

sig_sourcel <= "0001";

sig_source2 <= "0000";

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER I ~ 9

sig_destination <= "0101";

sig_data <= ZERO;

wait for CYCLE;

-- mov reg 1, reg6

sig_inst <= "000";

sig_sourcel <= "0001 ";

sig_source2 <= "0000";

sig_destination <= "0110";

sig_data <= ZERO;

wai t for CYCLE;

-- cmp regO, reg5

-- compare and not equal, no jump

sig_inst <= "100";

sig_sourcel <= "0000";

sig_source2 <= "0101 ";

sig_destination <= "0000";

sig_data <= ZERO;

wait for CYCLE;

-- cmp reg5, reg6

-- compare and equal, jump

sig_inst <= "100";

sig_sourcel <= "0101 ";

sig_source2 <= "0110";

sig_destination <= "0000";

sig_data <= ZERO;

wait for CYCLE;

- - penalty 2 clocks

wait for CYCLE;

wait for CYCLE;

-- read regO

sig_inst <= "ii0";

sig_sourcel <= "0000";

sig_source2 <= "0000 ";

sig_destination <= "0000";

sig_data <= ZERO;

wait for CYCLE;

- - read reg 1

sig_inst <= "ii0";

sig_sourcel <= "0001";

sig_source2 <= "0000";

| 40 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

sig_destination <= "0000";

sig_data <= ZERO;

wait for CYCLE;

-- r e a d r e g 2

sig_inst <= "llO";

sig_sourcel <= "0010 ";

sig_source2 <= "0000";

sig_destination <= "0000";

sig_data <= ZERO;

wait for CYCLE;

-- r e a d r e g 3

sig_inst <= "ii0";

sig_sourcel <= "0011";

sig_source2 <= "0000";

sig_destination <= "0000";

sig_data <= ZERO;

wai t for CYCLE;

-- r e a d r e g 4

sig_inst <= "ii0";

sig_sourcel <= "0100";

sig_source2 <= "0000";

sig_destination <= "0000";

sig_data <= ZERO;

wait for CYCLE;

-- r e a d r e g 5

sig_inst <= "llO";

sig_sourcel <= "01 Ol ";

si g_source2 <= "0000 ";

sig_destination <= "0000";

sig_data <= ZERO;

wait for CYCLE;

-- r e a d r e g 6

sig_inst <= "ii0";

sig_sourcel <= "0110";

sig_source2 <= "0000";

sig_destination <= "0000";

sig_data <= ZERO;

wait for CYCLE;

END PROCESS;

END mi croc_ tb_arch ;

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER 1 4 I

CONFIGURATION microc_tb_config OF microc_tb_ent IS

FOR mi croc_tb_arch

FOR ALL : microc_ent

USE ENTITY WORK.microc_ent (microc_arch) ;

END FOR;

END FOR;

END mi croc_tb_conf i g;

The input stimulus from the testbench of Example 49 is a set of instructions as
shown:

(i) LOAD 51, regO

(2) LOAD 2, regl

(3) ADD regO, regl, reg2

(4) SUB regO, regl, reg3

(5) I~JL regO , regl , reg4

(6) HOVE regl , reg5

(7) HOVE regl , reg6

(8) C01g regO , reg5

(9) CO~ reg5 , reg6

(i0) COT, reg5 , reg6

(ii) CO~ reg5, reg6

(12) RF~%D r e g O

(13) ~ regl

(14) ~ reg2

(15) READ reg3

(i 6) READ reg4

(17) READ reg5

(18) ~ reg6

These instructions will be passed through the pipeline of the microcontroller as
shown:

Input Stimulus PREDECODE DECODE EXECUTE

LOAD 51, regO LOAD 51, regO

LOAD 2, regl LOAD 2, regl

ADD regO, regl, reg2 ADD regO, regl, reg2

SUB regO, regl, reg3 SUB regO, regl, reg3 ADD regO, regl, reg2

regO, regl, reg4 MffTJ regO, regl, reg4 SUB regO, regl, reg3 ADD regO, regl, reg2

HOVE regl, reg5 HOVE regl, reg5 MUD regO, regl, reg4 SUB regO, regl, reg3

MOVE regl, reg6 HOVE regl, reg6 MOIRE regl, reg5 I~JL regO, regl, reg4

CO~ regO, reg5 C01~ regO, reg5 HOVE regl, reg6 MO~ regl, reg5

continued

142 CHAPTER 6 PIPELINE MICROCONTROLLER SYNTHESIZABLE DESIGN

InputSfim~us PREDECODE DECODE EXECUTE

CJEreg5, reg6 CJEreg5, reg6 CJEregO, reg5 MOVE regl, reg6

CJEreg5, reg6 CJEreg5, reg6 CJEreg5, reg6 CJEregO, reg5

CJEreg5, reg6 CJEreg5, reg6 CJEreg5, reg6 CJEreg5, reg6

READ regO NOP NOP NOP

READ regl NOP NOP NOP

READ reg2 READ reg2 NOP NOP

READ reg3 READ reg3 READ reg2 NOP

READ reg4 READ reg4 READ reg3 READ reg2

READ reg5 READ reg5 READ reg4 READ reg3

READ reg6 READ reg6 READ reg5 READ reg4

READ reg6 READ reg5

READ reg6

The input stimulus for READ regO and RF_mD regl will not be executed by the
microcontroller. During the instruction of CJE reg5, r eg6 is executed by execute
block and both registers reg5 and reg6 have the same contents. When this occurs,
output signal jump will be asserted to logical ' 1 ' . The output signal f l u s h will
also be asserted to logical '1 '. This will cause predecode block, decode block, and
register file block to be flushed.

It takes two cycles for the instruction NOP to travel from predecode block to exe-
cute block. Therefore the two instructions shown in shade (READ regO and READ
r e g l) will not be executed by the microcontroller.

The timing waveform simulation results are shown in Fig. 56. The output signal
from the microcontroller output drives values of 53, 4F, A2, 2 and 2. These values are
the contents of registers reg2, reg3, reg4, reg5 and reg6.

From Fig. 56, jump is asserted to logical ' 1 ' at clock 11 and clock 12. When
jump de-asserts back to logical ' 0 ' at clock 13, the microcontroller takes three
clock cycles to read the contents of register r e g 2 and drives this value on o u t p u t .
This results in the microcontroller getting a penalty hit of 2 clock cycles.

This is the reason why o u t p u t drives only contents of reg2 , reg3 , reg4 ,
r e g 5 and r e g 6 but not regO and r e g l . The first two instructions after the branch
(READ regO and agAD r e g l) were flushed away from the pipeline when the branch
occurred.

Appendix E shows the full synthesis of this pipeline microcontroller design. Top-
level design constraints are used as inputs to Design Compiler to synthesize the
design. Synthesis tweaks are also included in Appendix E to show the reader how the
synthesized results of the microcontroller are tweaked to obtain optimal perfor-
mance.

6.4 MICROARCHITECTURE DEFINITION FORTHE PIPELINE MICROCONTROLLER ~ 4 3

clock

inst[2:0]

sourcel[3:0]

source2 [3 : 0]

destination[3:0]

data[31:O]

jump

output[31:O]

D~[~CI(~I(~I(~ o X 4 X 6

X o X ' X3D(s ~

X o X, i X o)~[X 6 X 0

0

~ (~ ~ " 0
XIIII

\ I I /
.X 0

F I G U R E 56 Timing Waveform For Microcontroller Testbench.

This Page Intentionally Left Blank

PART 2
LOGIC

W I T H
SYNTHESIS
SYNOPSYS

This Page Intentionally Left Blank

7
T I M I N G C O N S I D E R A T I O N S IN DESIGN

The examples that are shown in Chapters 2 through 6 do not consider timing issues.
Those examples consider only design functionality. However, in VHDL synthesis the
timing and functionality of a design must always be considered together. When a
designer has verified that his/her design is functionally correct through simulations,
he/she will proceed with synthesis.

In synthesis, VHDL code is mapped into hardware logic gates for a specific tech-
nology library. During this phase of synthesis the designer will also input design con-
straints into the synthesis tool. This would allow the tool to map more efficiently to
logic gates. Logic optimization is performed, if necessary, in order to obtain the best
possible synthesis result for a given VHDL code and design constraint. If the synthe-
sized result meets all timing criteria, the designer can move forward to layout. How-
ever if timing is not met, the designer will have to analyze the design to fix the timing
violations.

In general there are two kinds of timing violations that exist in a d e s i g n - setup
timing violation and hold timing violation.

7.1 SETUP T IMING V IOLATION

Setup timing violation is usually encountered when a design is exposed to design
constraints that are "too tight." In other words, the design is over-constrained.

For example, the architecture of a certain design is only able to perform up to a
speed of 100 MHz using a 0.5-tx technology. When the designer tries to synthesize
the design to perform at a speed of 133 MHz, the synthesized result will show count-
less setup violations. The synthesized result will have combinational logic that has
delays greater than clock period.

147

148 CHAPTER 7 TIMING CONSIDERATIONS IN DESIGN

i ~ combinational logic

clock I flip-flop

F IGURE 57 Diagram Showing Combinational Logic Driving Signal A as Input to Flip-Flop.

clock

A I invalid

setup time >1 ns

I I
valid

FIGURE 58 Timing Diagram Showing Setup Time on Signal A.

In other words, setup violations are timing violations that cannot be met as the
propagation delay for a logic path is longer than the required time.

In design terms, a signal/bus is said to have an X amount of setup time require-
ment. This would mean that the signal/bus must be valid X unit time before the rise of
clock for a design that consists of positive edge triggered flip-flop. Similarly for a
design that consists of negative edge triggered flip-flop, the signal/bus must be valid
X unit time before the falling edge of clock.

In general, for a logic component with an X setup time requirement, it simply
means that the input to that logic component must be valid X unit time prior to an
evaluation of the condition of the input signals by that logic component.

Figure 57 shows a combinational logic as an input to a positive edge triggered flip-
flop. The signal A, which is the output of the combinational logic, must meet the
setup time requirement of the flip-flop. If the flip-flop has a setup time requirement of
1 ns, and c l o c k has a period of 10 ns, signal A must be valid at least 1 ns before the
rising edge of clock.

Figure 58 shows signal A valid at or before 1 ns from the rising edge of clock.

7.2 HOLD T IMING V IOLATION

Hold time violation is of a different nature than setup violation. For every sequential
component, there is a hold time requirement in which the input signal must be held
valid for the entire hold time. If the input signal is invalidated during this hold time, a
hold time violation is generated.

Hold time violation often occurs in designs that are "too fast." For example, if the
input to a positive edge triggered flip-flop changes too fast (the input changes before
the flip-flop is able to capture that input), a hold time violation is generated.

7.3 SETUP/HOLD TIMING CONSIDERATIONS IN SYNTHESIS 149

clock
.... I

A valid
\
/

~,, ,y

invalid

hold time > Ins

FIGURE 59 Timing Diagram Showing Hold Time on Signal A.

As can be seen from the logic diagram of Fig. 57, Fig. 59 shows that signal A must
be held by the combinational logic for an X amount of time. The value of this X
amount of time would depend on the hold time requirement of the flip-flop. If the
flip-flop has a hold time requirement of 1 ns with a c l o c k period of 10 ns, signal A
must be held valid for at least I ns after the rising edge of clock.

7.3 SETUP/HOLD T IMING CONSIDERATIONS IN SYNTHESIS

Upon synthesis, the designer must run static timing analysis on the synthesized result
to check for setup and hold time violations. Figure 60 shows a diagram for a synthe-
sized circuit.

To ensure that there is no setup violation, the equation that follows must hold true:

tprop + tdelay < tcloc k -- tsetu p

Here, tprop is the propagation delay from input clock to output Q of flip-flop; tdelay is
the propagation delay across combinational logic; tsetu p is the setup time requirement
of flip-flop; and tdock is the clock period.

To ensure there is no hold time violation, the equation that follows must hold true:

tdelay + tprop > thold

Here, tprop is propagation delay from input clock to output Q of flip-flop; tdelay is the
propagation delay across combinational logic; and thold is the hold time requirement
of flip-flop.

propagation delay from propagation delay from
clock to Q=tprop ~ clock to Q=tprop

D Q ~ Q

setup 't hold t setup,t hold
clock

FIGURE 60 Synthesized Circuit for Static Timing Analysis.

I 5 0 CHAPTER 7 TIMING CONSIDERATIONS IN DESIGN

When timing violations are encountered in synthesis, several options can be taken
by the designer to attempt to fix these violations.

Synthesis optimization using synthesis tool This is the simplest and easiest method for
fixing timing violations. Most synthesis tools have inbuilt algorithms that allow the
designer to make tweaks to the synthesized result in order to obtain an optimized
result. However, if a design has overly severe timing violations, it will not be possi-
ble for the synthesis tool to fix them. A good rule of thumb to remember is that syn-
thesis tools can frequently obtain around 10%-performance improvement. If the
synthesized results have violations that exceed 20%-possible timing improvement,
the designer must resort to a more manual approach.

Microarchitecural tweaks are manual compared to using a synthesis tool for fixing
timing violations. In this method, the designer must have a strong understanding of
the microarchitectural implementation of the design. The designer must also
understand the transformation of the VHDL code of that design into hardware
logic gates. Once the designer grasps these concepts, he/she can tweak the VHDL
code to change the microarchitectural implementation to the desired implementa-
tion and thus fix the timing violation.

Architectural changes is the last option that a designer has to fix the timing viola-
tions. This approach is not recommended as it would mean that whatever design is
being worked on must change architecturally. This should be the last resort for a
designer and be used only if synthesis tool optimization and microarchitectural
tweaks cannot fix the timing violations.

7.4 M I C R O A R C H I T E C T U R A L T W E A K S FOR FIXING SETUP
TIME VIOLATIONS

From the design perspective, setup violations mean there are performance problems
on the synthesized design. In other words, the synthesized design utilizes more logic
levels than allowed. The more logic levels a design has, the greater the propagation
delay of the design.

When a design has setup violations that cannot be fixed by using synthesis tool
optimization algorithms, the designer must resort to making either tweaks in the
VHDL code or microarchitectural implementation changes.

There are several ideas that can be used to perform microarchitectural tweaks
when a desired design is not performing as required. They include:

�9 logic duplication to generate independent paths;
�9 logic duplication prior to selection of later arriving signal;
�9 balancing of logic between flip-flops; and
�9 tipple decoding vs. multiple stage decoding.

7.4.1 Logic Duplication to Generate Independent Paths
From Fig. 61, assuming a critical path exists from A to Q2, logic optimization on

combinational logic X Y, and z would be difficult because x is shared with Y and z.
The optimization that can be performed on x might not be optimal due to the sharing

7.4 MICROARCHITECTURAL TWEAKS FOR FIXING SETUP TIME VIOLATIONS | 5 |

QI
A ~-

B ~"

Q2 ~-

FIGURE 61 Diagram Showing Generic Combinational Logic.

QI

Q2

FIGURE 62 Diagram Showing Generic Combinational Logic with "Logic Duplication"

of x. To overcome this problem, the designer can duplicate x and build two indepen-
dent paths for 01 and 02 (as shown in Fig. 62).

With logic duplication to generate two independent paths of ' x + Y ' and ' x + z ',

each can be independently optimized for OI and 02. This method improves timing
but it increases the die area as now more logic gates are utilized.

7.4.2 Logic Duplication Prior to Selection of Later Arriving Signal

Figure 63 shows a generic logic circuit whereby signal O has a setup violation. Signal
s e 2 is a late arriving signal compared to signals a and S. Combinational logic c is
assumed to be optimized and therefore cannot be further optimized.

To fix the setup violation of signal O, the earlier arriving signals of a and s
with respect to signal s e 2 can be decoded in advance. The designer can duplicate

A

sel

F I G U R E 63 Diagram Showing a Generic Logic Circuit.

152 CHAPTER 7 TIMING CONSIDERATIONS IN DESIGN

I

L

sel

FIGURE 64 Diagram Showing a Generic Logic Circuit with Logic Duplication for Decoding of
Early Arriving Signals.

12 ns 3 ns

1~ ~ ~
I clock

FIGURE 65 Diagram Showing Generic Design Utilizing Different Stages of Decoding.

combinational logic c and bring it forward to the inputs of the multiplexer (See
Fig. 64).

Since A and B are early arriving signals compared to signal s e l , the combina-
tional logic c is brought forward to enable the decoding of signals A and B prior to
selection of either of these using the multiplexer.

This method can improve timing but it will increase the die area because now
more logic gates are utilized (needs two combinational logic c instead of just one).

7.4.3 Balancing of Logic between Flip-Flops

A common method to fix setup violations in designs that utilize different stages of
decoding is to balance the logic between each stage. For example, Fig. 65 shows a
generic design that consists of two sets of combinational logic x and Y between three
flip-flops.

Combinational logic x has a delay of 12 ns while combinational logic Yhas a delay
of 3 ns. If c l o c k has a 10-ns period, the output from combinational logic x would
have setup violation. The delay of x i s greater than the c l o c k period itself.

Logic x will show a setup violation of 2 ns while Y still has plenty of time to meet
the setup requirement. The extra time from Y can be used to fix the setup violation
that x has.

At this point, the designer can balance the logic between x and Y by moving part
of the logic from x to Y. This way a more efficient and balanced logic is achieved
between the two combinational logic x and Y.

7.4 MICROARCHITECTURAL TWEAKS FOR FIXING SETUP TIME VIOLATIONS I 5 3

8 i ' ls
-~ v

I ~
I clock

7 n s

Q

FIGURE 66 Diagram Showing Generic Design Utilizing Different Stages of Decoding with Logic
Balancing.

With part of the logic of x moved to Y, the delay that x now has is only 8 ns (see
Fig. 66). The additional delay of 4 ns from x is added into Y. This brings the delay of
Y to 7 ns.

By moving and balancing the logic between x and Y, both x and Y can now meet
the setup requirements needed for a 10-ns-a2ock period.

7.4.4 Priority Decoding Versus Multiplex Decoding
Priority decoding is a good design method to use when the designer knows for certain
that an input signal is arriving late. The earlier arriving signals can be decoded before
the late signal arrives.

For example, a Boolean equation with eight inputs,

Q = A.B.C.D.E.F.G.H

can be designed using 7 AND gates. Figure 67 shows the design of the Boolean equa-
tion using priority decoding while Figure 68 shows the design using multiplex
decoding.

B

C

Q

FIGURE 67 Diagram Showing a Priority Decoding Design.

J ~4 CHAPTER 7 TIMING CONSIDERATIONS IN DESIGN

B

E

F

H

FIGURE 68 Diagram Showing a Multiplex Decoding Design.

Multiplex decoding is most suitable when neither of the input signals arrives later
than the other. In general, if there are no late arriving signals, multiplex decoding is
much faster than priority decoding.

From Fig. 67, there are 7 levels of logic from input signal #, to output signal Q. If
each of the AND gates has a propagation delay of I ns, output 0 is only valid 7 ns
after input A is valid.

From Fig. 68, there are only 3 levels of logic from input signal A to output signal
Q. Therefore, output 0 is valid 3 ns after input A is valid.

The designer must keep in mind that when input signals arrive at or about the
same time, it is always more efficient to use multiplex decoding when designing. Pri-
ority decoding is suitable only when either one of the input signals arrives late.

7.5 M I C R O A R C H I T E C T U R A L T W E A K S FOR F IX ING
HOLD TIME V I O L A T I O N S

Hold time violations occur when a signal changes too fast or becomes invalid too
fast. A simple way to fix hold time violations is to use buffers. Any path that has hold
time violations can be fixed by adding buffers in that path. These buffers will add
delay to the path and ultimately slow it down.

Figure 69 shows a design whereby signal B, which is an input to the flip-flop,
shows a hold time violation. To fix this violation, the designer can add buffers to sig-
nal a before it reaches the flip-flop. (BI

clock

FIGURE 69 Diagram Showing a Generic Design with Hold Time Violation.

7.7 MULTICYCLE PATHS 155

B D

FIGURE 70 Diagram Showing a Generic Design with Hold Time Violation Fixed.

Figure 70 shows a hold time violation fix by using two buffers back-to-
back. These additional buffers add the overall delay of signal a to input of the
flip-flop.

7.6 ASYNCHRONOUS/FALSE PATHS

Designers need to be aware of whether any portions of a design contain paths that are
asynchronous. It is good practice for a designer always to document these asyn-
chronous paths.

When a designer puts his/her VHDL code into synthesis, it is encouraged that the
designer "inform" the synthesis tool of existing asynchronous paths. This would
allow the synthesis tool to understand that an asynchronous path that is having setup
violation is in actual fact showing a false violation.

7.7 MULTICYCLE PATHS

Multicycle paths are paths that have delays over more than 1-clock cycle. Again it is
good practice for a designer always to document these multicycle paths.

From Fig. 71, the combinational logic between the two rising edge triggered flip-
flop has a delay of 35 ns while the clock period is only 10 ns. The combinational
logic is a multicycle logic that requires 4-clock period. This means the output from
the first flip-flop to the input of the second flip-flop is a multicycle path.

In synthesis, it is encouraged that the designer "inform" the synthesis tool of any
multicycle paths. This would allow the synthesis tool to more efficiently optimize the
other logic paths that are not meeting setup requirements rather than to attempt to
optimize the multicycle path.

FIGURE 71 Diagram Showing a Design with Multicycle Path.

This Page Intentionally Left Blank

8
V H D L SYNTHESIS W I T H

T I M I N G C O N S T R A I N T S

The most commonly used synthesis tool in the ASIC industry is Synopsys's Design
Compiler. The following VHDL examples are synthesized using Design Compiler.
Design constraints and synthesis tweaks are based on commands and synthesis
options from Design Compiler. For more information on synthesis options and com-
mands, please refer to Synopsys's Design Compiler Manual

The examples are synthesized using ' c l a s s . rib' synthesis technology library.
This library is used by Synopsys for synthesis training classes.

When a design is synthesized with a set of given constraints, there is no guarantee
that the synthesized result would be able to meet performance and area criteria the
first time it is synthesized. In fact, most of the time, a design would not be able to
meet performance or area requirements upon the initial synthesis run. When situa-
tions such as these occur, the designer must then use the synthesis tool to tweak the
design to yield an optimum design either from a performance perspective, an area
perspective, or both.

8.1 I N T R O D U C T I O N TO DESIGN COMPILER

Synopsys's synthesis tool is divided into two sections, Design Analyzer and Design
Compiler. The former is the graphical interface to Synopsys's synthesis tool and the
latter is the command shell interface to the same synthesis tool.

When using Synopsys's synthesis tool, there is a startup file that you must have in
your current working directory from which you invoke the synthesis tool. (This
assumes that you have set up the environment variables to point to the right path
for Synopsys's Design Analyzer and Design Compiler.) This startup file is

�9 synopsysdc, s e t u p file, and there should be two of them. One would be in the
root directory from which Synopsys is installed, and the other would be a local

157

I 5 8 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

startup file in your current working directory. This local startup file should be used to
specify your individual design specifications.

In these local startup files, four important parameters must be set before you can
perform any synthesis.

�9 search_path
This parameter is used to specify to the synthesis tool all the paths that it
should search when looking for a synthesis technology library to reference
during synthesis.

�9 target_library
The file pointed to by this parameter is the library that contains all the logic
cells for mapping during synthesis.

�9 symbol_library
This parameter points to the library that contains "visual" information on the
logic cells in the synthesis technology library. All logic cells have a symbolic
representation and information about the symbols is stored in this library.

�9 link_library
This parameter points to the library that contains information on the logic
gates in the synthesis technology library.

An example on use of these four variables from a . s a m o p s y s d e , s e t u p file:

search_path = ". /synopsys/libraries/syn

/cell_library/libraries/syn "

target_library = class, db

link_library = class, db

symbol, library = class, sdb

Once you have these variables set up correctly, you are ready to invoke the synthesis
tool. To invoke the graphical interface:

unix_prompt> design_analyzer

To invoke the command line shell interface:

unix_prompt > dc_shel i

8.2 USING DESIGN COMPILER FOR SYNTHESIS

Design Compiler has many options that allow the designer a great deal of flexibility
when synthesizing a design. Chapter 8.3 presents different possible options to use
when a synthesized design that does not meet the required performance criteria is
encountered. Chapter 8.2 presents some general commands that are often used dur-
ing synthesis. These include, for example, reading a design, setting constraints on the
design, creating clocks, handling clock skews, and others.

8.2 USING DESIGN COMPILER FOR SYNTHESIS 159

�9 Reading a Design
Once the environment has been set up (as shown in Chapter 8.1), a design must be
read into Design Compiler. The design can be represented in many different for-
mats such as VHDL, Verilog, DB, State Table, EDIF, Equation, LSI, Mentor, XNF
and PLA.

dc_shell> read-format <format_type> <filename>

For example, to read in a VHDL file example.vhd:

dc_shell> read -format vhdl example.vhd

Multiple files can also be read in using one single command line:

dc_shell> read -format vhdl {example.vhd
examplel, vhd example2, vhd example3, vhd}

�9 Initial Checking of a Design
After a design has been read into Design Compiler, the command
check_des ign can be used by the designer to check for minor design problems.
Command c h e e k _ d e s i g n will check for shorts, opens, nonconnection, multiple
connection and multiple instantiations.

dc_shell> check_design

�9 Creating a Clock
When a designer wishes to constrain a design that has been read into Design Com-
piler, he/she must first create a clock. This clock is associated with the clock
pin of the design. If the design does not have a clock pin, then this clock is created as
a virtual clock. A clock must always be created as a reference for timing analysis.

dc_shell> create_clock-name <clock_name> -
period <clock_period> <design_clock_~in_name>

If a design has a clock pin with the name ulockA and is to operate with a 10-ns
clock period of 50% duty cycle:

dc_she11> create_clock -name clock -period 10
clockA

However, if a design does not have a clock pin, then a virtual clock is created:

dc_she11> create_clock -name clock -period 10

| ~0 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

If a designer wishes to create a clock but with a duty cycle other than 50%"

dc_shell> create_clock -name clock -period 10 -
waveform {2 I0}

This command will create a virtual clock of period 10 ns with the rising edge at
2 ns and falling edge at 10 ns.

�9 Setting Clock Skew
Synopsys during synthesis is not able to synthesize any clock trees. Clock trees
rely heavily on the placement of cells on the layout portion of a design. Therefore,
during synthesis, Design Compiler cannot synthesize a clock tree. To overcome
this problem of clock-tree synthesis, the designer can use the command
set_clock_skewto apply a clock skew to the created clock. This clock skew is
a method of modeling propagation delay that exists in a clock tree.

dc_shell> set_clock_skew-rise_delay
<ri sing_cl ock_ skew> - f al 2_de2 ay
<falling_clock_skew> <clock_name>

This command is useful in applying an estimated clock skew onto the clock tree.
However, if there is information being back-annotated into Design Compiler

from layout, then the actual clock delay can be calculated along the clock tree.

dc_shell> set_clock_skew-propagated
<clock_name>

�9 Setting Input and Output Delays on a Design
When constraining a design, it is important for the designer to specify to Design
Compiler the input and output delays of a design. By using these input and output
delay values and the clock period, Design Compiler is then able to analyze the
required timing for a certain path.

dc_shell> set_input_delay-clock <clock_name>
<input_delay> <input_port>

For example, to specify an input port $NPtrTA to have an input delay of 2 ns with
reference to clock CZOCKa.

dc_shell> set_input_delay 2 -clock CLOCKA
INPUTA

For this command, because only one number (the value of 2) is used, Design Com-
piler will use the same number for minimum and maximum for rise and fall input
time for the input port INPO'~A.

8.3 PERFORMANCE TWEAKS 161

If the designer knows for certain the minimum and maximum input time for the
input port, the designer can use the -max and -min option.

dc_shell> set_input_delay-clock CLOCKA -max
<delay_value> INPUTA
tic_shell> set_input_delay-clock CLOCKA -min
<delay_value> INPUTA

Output delay is specified in the same way as that for input delay.

dc_shell> set_outputdelay-clock <clock_name>
<delay_value> <output_port>

If the designer wishes to specify for output delay using minimum and maximum
time for the output port:

dc_shell> set_output_delay-clock <clock_name>
-max <delay_value> <output_port>
dc_shell> set_output_delay-clock <clock_name>
-min <delay_value> <output_port>

�9 Synthesizing a Design
Once the constraints have been set on the design, the designer can synthesize the
design using the command compile. There are many other commands that can be
used together with the compile command in order to achieve optimum synthesis
results. These commands are discussed in detail in Chapter 8.3.

dc_shell> compile -map_effort medium

�9 Saving a Design
Design Compiler can save a database in different formats. A common format in
which to save a synthesized database is the Synopsys DB format.

tic_shell> write -format db -output <filename.db>

8.3 PERFORMANCE T W E A K S

There are many ways in which a designer can tweak his/her design to obtain opti-
mum performance results. Several of the more general often used tweaks for perfor-
mance optimization are as follows"

1. compilation with map_ef fort high option;
2. group critical paths together and giving them weight factor;
3. flattening a design;

162 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

4. characterizing submodules;
5. register balancing;
6. use of FSM Compiler to optimize finite state machine designs;
7. choosing high-speed implementation for high-level functional modules; and
8. balancing of logic trees with heavy loading.

8.3.1 Compilation with 'map_effort high' Option

Generally, during synthesis, it is advisable for the designer to run a quick synthesis
on his/her design using a m a p _ e f f o r e medium option when employing design
constraints. This would allow the designer to have a feel for the timing violations if
any exist. Using a m a p _ e f f o r e h i g h option during the first synthesis run is not
advisable as the run-time for a map_ef foz 'e h i g h option is significantly longer
than that for a m a p _ e f f o r t medium.

In general, a rule of thumb to remember is that moving from m a p _ e f f o r t
medium to m a p _ e f f o r e h i g h compilation can improve design performance by
about 10%.

Example 50 uses component inference to obtain a 32-bit adder; i n p u t A and
inpueB are 32 bits each and the output sum is 33 bits wide. The 33rd bit is the
CARRY bit.

EXAMPLE 50 SynthesizableVHDL Code for a 32-BitAdder

filename : adder_timing, vhd

LIBRARY IEEE ;

USE IEEE. std_logic_l164 . ALL;

USE IEEE. std_logic_ari th. ALL;

ENTITY adder_timing_ent IS

PORT (

inputA : IN std_logic_vector (31 downto 0);

inputB : IN std_logic_vector (31 downto 0);

Sum : OUT std_logic_vector (32 downto 0)

);

END adder_ timing_en t;

ARCHITECTURE adder_timing_arch OF adder_timing_ent IS

BEGIN

Sum <= signed('O'&inputA) + signed('O'&inputB);

END adder_ timing_arch;

Although the design in Example 50 does not have a clock, in synthesis with timing
constraints a virtual clock must be declared. This is required as input and output
delay declarations are referenced to a clock.

By assuming a virtual clock of 10-ns cycle, the inputs to the adder are assumed to
receive only valid data 3 ns after the rise of a clock. Also, the output of the adder is
assumed to be driven 3 ns before the rise of the clock.

8.3 PERFORMANCE TWEAKS 163

inputA invalid

inputB invalid

Sum

\/
/\

\/
/\

valid

valid

invalid / \

input_delay output_delay

valid

FIGURE 7'2 Timing Diagram Showing Input Delay and Output Delay with Reference
to a Virtual Clock.

To place the constraint upon the adder, the following steps are taken.

1. To invoke Design Compiler without the Graphical Unit Interface (GUI).

unix_prompt > dc_shel l

dc shell >

2. To read the VHDL code for the design into Design Compiler.

dc_shell> read -format vhdl adder_timing, vhd

3. Design Compiler will analyze and elaborate the VHDL file. When this is
completed, set c u r r e n t _ d e s i g n to the 32-bit adder.

dc_shell> current_design = adder_timing_ent

4. Set the design constraint on the adder.

dc_she11> create_clock -name clock -period 10.0

dc_she11> set_input_delay 3.0 -clock clock

inputA *
dc_she11> set_input_delay 3.0 -clock clock

inputS*

dc_shell> set_output_delay 3.0 -clock clock Sum

5. Compile the design using map_effort medium option

dc_she11> compile -map_effort medium

164 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

6. When compilation is completed, do a report_timing on the synthesized
result to obtain a report of the timing violations.

dc_shell> report_timing -path full -delay max -
max_paths 1 -nworst 1

Information. Updating design information...

Report �9 timing

-path full

-delay max
-max_paths 1

Design �9 adder_timing_ent

Version" 1998.02-1

Date �9 Mon Mar 15 22.39.29 1999

Opera ting Conditions.

Wire Loading Model Mode" top

(UID-85)

Design Wire Loading Model Library

adder_ t iming_ent 05x05 class

Startpoint: inputA[5] (input port clocked by clock)

Endpoint: Sum[ll] (output port clocked by clock)
Path Group : clock

Pa th Type : max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay
inputA[5] (in)

add_15/plus/A[5]
(adder_ t iming_ent_DWO I_ addsub_ 33_ 1)
add_15/plus/U53/Z (IVI)
add_15/pl
add_15/p1
add_15/p1
add_15/p1
add_15/p1
add_15/pl
add_lf /pl
add_l f /pl

us/U280/Z (ND2I)

us/U25/Z (AO3P)

us/U249/Z (NR2I)

us/U50I/Z (ND2I)

us/U214/Z (AN2I)

us/U57/Z (ND2I)

us/U297/Z (ND2I)

us/U298/Z (ND2I)

0.00 0.00

0.00 0.00

3.00 3.00 r

0.00 3.00 r

0.00 3.00 r

0.12 3.12 f

0.29 3.41 r

0.50 3.91 f

0.76 4.67 r

0.12 4.79 f

0.67 5.46 f

0.30 5.75 r

0.12 5.87 f

0.30 6.17 r

8.3 PERFORMANCE TVVEAKS 165

Point Incr Path

add_15/plus/U410/Z (ND2I)

add_15/plus/U411/Z (ND2I)

add_15/plus/U412/Z (ND2I)
add_lS/plus/U413/Z (ND2I)

add_15/plus/U24/Z (ENI)

add_ 15~plus~SUM [Ii]

(adder_ t iming_ent_DWO l_addsub_ 33_ 1)

Sum[ll] (out)

data arrival time

O. 12 6.29 f

0.30 6.59 r

O. 12 6.71 f
0.25 6.96 r

0.38 7.34 f

O. O0 7.34 f

O. O0 7.34 f

7.34

clock clock (rise edge)

clock network delay (ideal)
output external delay
data required time

10.00
0 .00

i0.00

i0.00

-3. O0

7.00

data required time
data arrival time

7.00

-7.34

slack (VIOLATED) -0.34

7. The violation shown by Design Compiler is -0.34 ns. An incremental com-
pilation is performed but with m a p _ e f f o r t high option. Also, note that
incremental_mapping is used. This option permits an incremental com-
pilation rather than recompiling the whole design.

dc_shell> compile -map_effort high -
incremental_mapping

8. When compilation is completed, report_timing is executed to obtain
data on timing violation.

dc_shell> report_timing -path full -delay max -
max_l)aths 1 -nworst 1

Information. Updating design information...

Report �9 timing

-path full

-delay max
-max_paths 1

Design �9 adder_timing_ent

Version. 1998.02-1

Date : Mon Mar 15 22:44:16 1999

(UID-85)

I ~ CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

Operating Condi tions .
Wire Loading Model Mode: top

Design Wire Loading Model Library

adder_ t iming_ent 05xO 5 c l ass

Startpoint. inputB[16] (input port clocked by clock)

Endpoint" Sum[30]

Path Group" clock

Path Type. max

(output port clocked by clock)

Point Incr Path

clock clock (rise edge)
clock network delay (ideal)
input external delay
inputS[16] (in)
add_lS/plus/S [16]

(adder_ t iming_ent_DWO l_addsub_ 33_ 1)

add_15/plus/U342/Z (ND2I)
add_15/plus/U344/Z (AO3P)
add_15/plus/U345/z (ND4P)

add_15/plus/U168/Z (ND2I)
add_15/plus/U435/Z (ND2I)
add_15/plus/U196/Z (ND2I)
add_lS/plus/USll/Z (IVI)
add_15/plus/U513/Z (ND2I)
add_15/plus/U197/Z (ND2I)
add_15/plus/U258/Z (ND2I)
add_15/plus/U84/Z (NR2I)
add_15/plus/U95/Z (ENI)
add_15/plus/SUM [3 0]

(adder_ t iming_ent_DWO l_addsub_ 33_1)

Sum[30] (out)

data arrival time

0.00 0.00

0.00 0.00
3.00 3.00 f
0.00 3.00 f

0.00 3.00 f

0.29 3.29 r
0.55 3.84 f
0.81 4.65 r
0.12 4.77 f

0.25 5.03 r
0.12 5.15 f
O. 29 5.44 r
0.28 5.72 f
0.25 5.97 r
0.12 6.09 f
0.57 6.66 r
O. 34 7. O0 f

0 .00
0 .00

7.00 f

7.00 f

7.00

clock clock (rise edge)

clock network delay (ideal)
output external delay

data required time

i 0 . 0 0
0 .00

-3 . O0

O~

0.
7.

7.

O0

O0
O0

O0

data required time

data arrival time

o

7.
O0
O0

slack (MET) 0.00

8.3 PERFORMANCE TWEAKS 167

9. From the timing report, Design Compiler has optimized away the critical
path with a setup violation of-0.34 ns by using a m a p _ e f f o r t h i g h
option with incremental_mapping.

8.3.2 Group Critical Paths Together and Give Them a Weight Factor

For designs that still cannot meet timing requirements even with a map_effort
high compilation option, the designer can use the group_path command to
group timing critical paths and set a weight factor on these critical paths. The
larger the value of the weight, the more effort will Design Compiler use to try to
optimize that path. This command allows a designer to prioritize critical paths for
optimization.

EXAMPLE 51 Example of a 16-Bit Subtractor

Filename : subtractor_timing, vhd
LIBRARY IEEE;

USE IEEE. std_logic_l164 .ALL;

USE IEEE. std_logic_ari th. ALL;

ENTITY subtractor_ent IS

PORT (

inputA : IN std_logic_vector (15 downto 0);

inputB : IN std_logic_vector (15 downto 0);

outputC : OUT std_logic_vector (15 downto O)

);

END subtractor_ent ;

ARCHITECTURE subtractor_arch OF subtractor_ent IS

BEGIN

outputC <= signed(inputA) - signed(inputB);

END subtractor_arch;

The design constraints for Example 51"

dc_she11> read -format vhdl
subtractor_ timing, vhd
dc_she11> Create_clock -name clock -period 5
dc_she11> set_input_delay I -clock clock
inputA *
dc_she11> set_input delay I -clock clock
inpu tS *
dc_she11> set_output_delay I -clock clock
outputC*

| ~ CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

1. The subtractor design is compiled with a map_effort medium option.

dc_shell> current_design -
subtractor_ timing_ent
dc_shell> compile -map_effort medium
dc_shell> report_timing -path full -delay max -
max_paths I -nworst i

Information. Updating design information... (UID-85)

Report �9 timing
-path full
-delay max
-max_paths 1

Design �9 subtractor_ent
Version" 1998.02-1

Date �9 Tue Mar 16 17"47"02 1999

Opera t ing Condi t i ons .

Wire Loading Model Mode. top

Design Wire Loading Model Library

subtract or_en t 05x05 cl ass

Startpoint: inputA[8] (input port clocked by clock)

Endpoint : outputC[ll]

(output port clocked by clock)

Path Group: clock

Path Type : max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay
inputA[8] (in)
sub 15~minus/A [8]

(subtractor_ ent_DWO l_sub_ 16_ I)
sub_15/minus/U44 /Z (IVI)

sub_15/minus/U68/Z (ND2I)

sub_15/minus/U32/Z (AN2I)

sub_15/minus/U97/Z (ND2I)

sub_15/minus/U66/Z (NR2I)

sub_15/minus/U230/Z (ND2I)

0.00 0.00

0.00 0.00

1.00 1.00 r

0.00 1.00 r

0.00 1.00 r

0.12 1.12 f

0.25 1.38 r

0.34 1.72 r

0.28 1.99 f

0.57 2.56 r

0.19 2.75 f

8.3 PERFORMANCE'I'VVEAKS 169

Point Incr Path

sub_15/minus/U222/Z (AO3P)

sub_15/minus/U180/Z (ND2I)

sub_15/minus/UlSl/Z (ND2I)

sub_15/minus/U80/Z (ENI)

sub_ 15/minus/DIFF [11]

(subtractor_ ent_DWO 1_sub_ 16_ 1)

outputC[ll] (out)

data arrival time

0.68 3.43 r

0.12 3.55 f

0.25 3.81 r

0.38 4.18 f

0.00 4.18 f

0.00 4.18 f

4.18

clock clock (rise edge)

clock network delay (ideal)

output external delay

data required time

5.00 5.00

0.00 5.00

-i.00 4.00

4.00

data required time

data arrival time

slack (VIOLATED)

4.00

-4.18

-0.18

2. The subtractor design is having a setup violation of 0.18 ns. A group_path
command is used to group the critical path and give it a weight factor of 5.

dc_shel I > group_pa th -name cri ti cal I - from

inputA[8] -to outputC[ll] -weight 5

dc_shell> compile -map_effort high -

incremental_mapping

dc_shell> report_timing -path full -delay max -
max_paths 1 -nworst 1

Information. Updating design information...

Report. timing

-path full

-delay max

-max_paths 1

Design �9 subtractor_ent

Version. 1998.02-1

Date �9 Tue Mar 16 17"50"55 1999

Operating Conditions.

Wire Loading Model Mode. top

(UID-85)

| 7 i) CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

Design Wire Loading Model Library

subtractor_ent 05x05 class

Startpoint: inputA[8] (input port clocked by clock)

Endpoint : outputC[ll]
(output port clocked by clock)

Path Group" criticall
Path Type: max

Point Incr Path

clock clock (rise edge)
clock network delay (ideal)
input external delay
inputA[8] (in)
sub_ 15/minus/A [8]

(subtractor_ ent_DWO l_sub_ 16_ I)
sub_15/minus/U373/Z (IVI)
sub_15/minus/U376/Z (ND2I)
sub_15/minus/U372/Z (AN2I)
sub_15/minus/U366/Z (ND2I)
sub_15/minus/U387/Z (IVI)
sub_15/minus/U321/Z (ND2I)
sub_15/minus/U239/Z (IVI)
sub_15/minus/U237/Z (ND2I)
sub_15/minus/U236/Z (ND2I)
sub_15/minus/U235/Z (ND2I)
sub_15/minus/Ul81/Z (ND2I)
sub_15/minus/U80/Z (ENI)
sub_ 15/minus/DIFF [i i]

(subtractor_ ent_DWO l_sub_ 16_ 1)
outputC[ll] (out)
data arrival time

0.00 0.00
0.00 0.00
1.00 1.00 f
0.00 1.00 f

0.00 1.00 f
0.24 1.24 r
0.12 1.36 f
0.64 2.00 f
0.25 2.25 r
0.18 2.43 f
0.25 2.69 r
0.12 2.81 f

O. 25 3.06 r
0.12 3.18 f
0.25 3.44 r
0.12 3.56 f
0.38 3.93 f

0.00 3.93 f
0.00 3.93 f

3.93

clock clock (rise edge) 5.00 5.00
clock network delay (ideal) 0.00 5.00
output external delay -i. 00 4. O0
data required time 4. O0

.

data required time 4. O0
data arrival time -3.93

slack (MET) 0.07

8.3 PERFORMANCE TWEAKS I 71

Startpoint: inputA[2] (input port clocked by clock)
Endpoint : outputC[15]

(output port clocked by clock)

Pa th Group: clock

Path Type: max

Point Incr Path

clock clock (rise edge)
clock network delay (ideal)

input external delay
inputA[2] (in)
sub_15/minus /A [2]

(subtractor_ent_DWOl_sub_l 6_i) O . 00

sub_15/minus/U84/Z (IVI) O . 18

sub_15/minus/U144/Z (ND2I) O. 34
sub_15/minus/U121/Z (ND2I) O. 12

sub_15/minus/U40/Z (IVI) O. 24

sub_15/minus/U39/Z (ND2I) O. 28

sub_15/minus/U146/Z (ND2I) 0.25

sub_15/minus/U202/Z (ND2I) 0.20
sub_15/minus/U131/Z (ND2I) O. 25
sub_15/minus/U246/Z (IVI) O. 12

sub_15/minus/U244/Z (ND2I) 0.25

sub_15/minus/U243/Z (ND2I) O. 12

sub_15/minus/U242/Z (ND2I) 0.25
sub_15/minus/U117/Z (ENI) O. 38

sub_ 15/minus/DIFF [15]

(subtractor_ent_DWO l_sub_ 16_ 1)

outputC[15] (out)
data arrival time

0.00 0.00
0.00 0.00

1.00 1.00 r
0.00 1.00 r

0.00
0.00

1.00 r
1.18 f

1.53 r
1.65 f

1.89 r
2.17 f

2.42 r

2.62 f
2.87 r
2.99 f
3.24 r

3.36 f

3.62 r

3.99 f

3.99 f
3.99 f
3.99

clock clock (rise edge)
clock network delay (ideal)
output external delay
data required time

5.00
0.00

-i. O0

5.00
5.00
4.00
4.00

data required time

data arrival time
4.00

-3.99

slack (MET) O. Ol

3. A setup violation of 0.18 ns is fixed by using group_path and
map_effort high option.

172 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

8.3.3 Logical Flattening of a Design

Logical flattening of a design can be used to break the hierarchy of a design. All logic
gates for that particular design will be at the same level of hierarchy. This would
allow Design Compiler to try to optimize those logic gates to gain better perfor-
mance and area utilization. Design Compiler during optimization must maintain the
integrity of block interface/ports and therefore is not able to optimize across the hier-
achical boundary.

This option of logical flattening is used for hierarchical designs. However, this
option is not suitable for usage if the hierarchical design is large. Too huge a design
will take up considerable computing resources (for example, a long time to compile),
thus preventing Design Compiler from performing a good optimization.

EXAMPLE 52 Example ofa4-Bit Multiplier

Filename : mul tiplier_timing, vhd

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

USE IEEE. std_logic_ari th.ALL;

ENTITY mul tiplier_timing_ent IS

PORT (

inputA : IN std_logic_vector (3 downto O);

inputB : IN std_logic_vector (3 downto 0);

outputC : OUT std_logic_vector (7 downto O)

);

END mul tipl i er_ timing_en t;

ARCHITECTURE multiplier_timing_arch OF mul tiplier_timing_ent IS

BEGIN

outputC <= signed (inputA) * signed (inputB) ;

END mul tipl i er_ timing_arch;

Note: Example 52 is a simple example of a 4-bit multipler. When synthesized, it
contains only one level of hierarchy consisting of a multipler from DesignWare
library. Therefore, when this design is logically flattened to break the hierarchy,
there is a minimum of optimization that can be achieved. Logical flattening of a
design can obtain better results if a design contains more than one level of hierar-
chy. Better optimization results can also be obtained if a design consists of one
level of hierarchy but with logic gates external to the level of hierarchy.

The following synthesis scripts to synthesize Example 52 are meant to show the
reader how logical flattening can be achieved.

8.3 PERFORMANCE TWEAKS 173

1. To set the design constraint for the multipler:

uni t_prompt> dc_shell
dc_shell> read -format vhdl
mul tiplier_ timing, vhd
dc_shell> read -format vhdl
multiplier_ timing, vhd
dc_shell> currentdesign =
mul t ipl i er_ t iming_ent
dc_shell> create_clock -name clock -period 10.0
dc_she11> set_input_delay 3 -clock clock
inputA *
dc_she11> set_input_delay 3 -clock clock

inpu tS *
dc_she11> set_output_delay 2.7 -clock clock
outputC*

2. The multiplier is compiled with a map_effort medium option.

dc_shell> compile -map_effort medium
dc_shell> report_timing -path full -delay max -
max_paths I -nworst 1

Information. Updating design information...

Report �9 timing

-path full
-delay max
-max_paths 1

Design �9 mul tiplier_timing_ent

Version. 1998.02-1

Date �9 Tue Mar 16 16.28.09 1999

(UID-85)

Opera ting Condi ti ons �9

Wire Loading Model Mode" top

Design Wire Loading Model Library

multiplier_timing_ent 05x05 class

Startpoint. inputA[l]
Endpoint : outputC[7]

Path Group: clock
Pa th Type : max

(input port clocked by clock)

(output port clocked by clock)

| 1 4 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

Point Incr Path

clock clock (rise edge) 0.00

clock network delay (ideal) 0.00

input external delay 3. O0

inputA[l] (in) O. O0
mul_15 /mul t/S [I]

(multiplier_timing_ent_DWO2_mult 4 4 0)

mul_15/mult/U20/Z (ND4P)

mul_15/mult/U59/Z (ND2I)

mul_15/mult/U98/Z (ND2I)

mul_15/mult/U99/Z (IVI)

mul_15/mult/U100/Z (AO3P)

mul_15/mult/Ul14/Z (ENI)

mul_15/mult/UlO8/Z (ND2I)

mul_15/mult/U41/Z (ND2I)

mul_l 5/mul t/FS/B [2]
(multiplier_timing_ent_DWO1_add 6 0)
mul_15/FS/mult/U6/Z (AO3P)

mul_15/FS/mult/U20/Z (ND2I)

mul_15/FS/mult/U25/Z (ND2I)

mul_15/FS/mult/U26/Z (ND2I)

mul_15/FS/mult/Ull/Z (ENI)

mul_l 5 /mul t/FS/SUM[5]
(multiplier_timing_ent_DWOl_add 6 0) 0.00

mul_15 /mul t/PRODUCT [7]
(multiplier_timing_ent_DWO2_mult 4 4 0)0.00

outputC[7] (out 0.00

data arrival time

0.00

0.00

3.00 f

3.00 f

0.00 3.00 f

0.72 3.72 r

0.12 3.84 f

0.25 4.10 r

0.17 4.27 f

O. 68 4.95 r

0.48 5.43 f

0.25 5.68 r

0.26 5.95 f

0. 005.95 f

0.68 6.63 r

0.20 6.83 f

0.25 7.08 r

0.12 7.20 f

0.38 7.58 f

7.58 f

7.58 f

7.58 f

7.58

clock clock (rise edge)

clock network delay (ideal)

output external delay

data required time

i0.00

0.00

-2.70

i0.00

i0.00

7.30

7.30

data required time

data arrival time

7.30

-7.58

slack (VIOLATED) -0.28

8.3 PERFORMANCE TWEAKS 115

3. With a violation of 0.28 ns, all hierarchies in the design are torn down to

create a fiat design.

tic_shell> ungroup -all -flatten
tic_shell> compile -map_effort high -
increment al_mapping
dc_shell> report_timing -path full -delay max -
max_paths 1 -nworst 1

Information" Updating design information...

Report �9 timing

-path full
-delay max
-max_paths 1

Design �9 multiplier_timing_ent

Version. 1998.02-1

Date �9 Tue Mar 16 16"28"23 1999

(UID-85)

Opera ting Condi ti ons .

Wire Loading Model Mode" top

Design Wire Loading Model Library

mul t ipl i er_ t iming_ent

Startpoint. inputA[l]

Endpoint : outputC[7]
Path Group : clock
Pa th Type : max

Point

05x05 class

(input port clocked by clock)

(output port clocked by clock)

Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay

inputA[l] (in)

mul_15/mult/U19/Z (AN2I)

mul_15/mult/Ul8/Z (ENI)

mul_15/mult/UlO9/Z (ND2I)

mul_15/mult/U110/Z (ND2I)

mul_15/mult/U29/Z (ENI)

U32/Z (ENI)
U69/Z (ND2I)
U68/Z (ND2I)

0 . 0 0 0 . 0 0
0 . 0 0 0 . 0 0
3 . 0 0 3 . 0 0 f

0 . 0 0 3 . 0 0 f

0 . 6 3 3 . 6 3 f

0.42 4.05 f

0.30 4.35 r

0.12 4.47 f

0.42 4.89 f

0.48 5.37 f

0.25 5.62 r

0.12 5.74 f

176 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

U77/Z (ND2I)
U76/Z (IVI)
U75/Z (ND2I)

U54/Z (ND2I)

mul_15/FS/mult/U25/Z (ND2I)

mul_15/FS/mult/U26/Z (ND2I)

mul_15/FS/mult/Ull/Z (ENI)

outputC [7] (ou t)

data arrival time

clock clock (rise edge)

clock network delay (ideal)

output external delay

data required time

O. 25 6. O0 r

0.12 6.12 f

0.30 6.42 r

0.12 6.54 f

0.25 6.79 r

0.12 6.91 f

0.38 7.29 f

O. O0 7.29 f

7.29

i0.00 i0.00

0.00 i0.00

-2.70 7.30
7.30

data required time

data arrival time

7.30

-7.29

slack (MET) O. Ol

The negative slack of-0.28 ns is fixed with logical flattening of the design and
recompiling with map_effort high and incremental_mapping option.

8.3.4 Characterizing Submodules

Characterize is a very useful Design Compiler command for optimizing hierarchical
designs. When a module is synthesized with constraints independently, it is able to meet
timing requirements. When this same module is instantiated in a higher-level hierarchy, it
may no longer be able to meet the design constraints of the higher-level hierarchy.

TOP

inst name: I 1 inst name: I2

inst name: 14

linst n a m e : 13

FIGURE 73 Diagram Showing Multiple Submodules on Module TOE

8.3 PERFORMANCE TVVEAKS 177

From Fig. 73, submodule A, B and C are synthesized independently and all are
able to meet their design constraints. However, when all three submodules are instan-
tiated in a higher-level hierarchy of module TOP, all three submodules may not nec-
essarily meet timing requirements. This is especially true if the design constraints set
on module TOP are tighter than those set on each submodule independently. Further-
more, there may be some glue logic on module TOP to glue the three submodules A,
B and C together, which will also change the timing requirements for each of these
submodules.

To overcome this problem of submodule usage in a higher-level hierarchy, the
command characterize can come in handy. This command captures the bound-
ary conditions of a submobile based on the environment of the higher-level hierarchy.
The designer can then compile the submodule independently once this boundary
condition of the submodule is captured.

dc_shell> currentdesign = TOP

tic_shell> characterize II

dc_shell> current_design = II

dc_she11> compile -map_effort high -

increment almapping

dc_shell> currentdesign = TOP

dc_shell> characterize I2

dc_shell> currentdesign = I2

dc_shell> compile -map_effort high -

increment almapping

tic_shell> currentdesign = TOP

dc_shell> characterize I3

tic_shell> current_design = I3

dc_shell> compile -map_effort high -

increment al mapping

dc_shell> current_design = TOP

Appendix D shows the constraint synthesis of the pipeline microcontroller
example of Chapter 6. Optimization of the microcontroller makes use of the com-
mand characterize.

8.3.5 Register Balancing
Register balancing is a very useful command when it comes to optimizing designs
that are made up of pipelines. The concept here is to allow Design Compiler to move
logic from one stage of the pipeline to another. This would allow Design Compiler
the flexibility to move logic away from pipeline stages that are overly constrained to
pipeline stages that have additional timing.

178 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

multiplierl

inputA I OI i!i
clock I

multiplier2

oiiix o
I

outputA

inputB I Ol l i Ol l O ~
clock I

FIGURE 74 Diagram Showing a Pipeline Design.

Figure 74 shows a design with two pipes. Each pipe has three flip-flops and
between each of these there is a multiplier. The first multiplier for each of these two
pipes is a 4-bit multiplier while the second multiplier is an 8-bit multiplier. Therefore
the combinational logic involved between the second and third flip-flop is twice that
of the combinational logic between the first and second flip-flop.

EXAMPLE 53 Example of VHDL Code for a 2-Pipe Design

Filename : balance__buf . vhd

LIBRARY IEEE;

USE IEEE. std_logic_l164 .ALL;

USE IEEE. s td_l ogi c_ari th. ALL;

ENTITY balance_reg_ent IS

PORT (

clock : IN std_logic;

multiplierl : IN std_logic_vector (3 downto O) ;

multiplier2 : IN std_logic_vector (7 downto 0);

inputA : IN std_logic_vector (3 downto 0);

inputB : IN std_logic_vector (3 downto O);

outputA : OUT std_logic_vector (15 downto 0);

outputB : OUT std_logic_vector (15 downto O)

);

END balance_reg_en t;

ARCHITECTURE balance_reg_arch OF balance_reg_ent IS

SIGNAL levell_inputA, levell_inputB:std_logic_vector (3 downto O) ;

8.3 PERFORMANCE TWEAKS 1 7 9

SIGNAL end_levell_inputA, end_levell_inputB : std_logic_vector (7

downto 0) ;

SIGNAL level2_inputA, level2_inputB:std_logic_vector (7 downto O) ;

SIGNAL end_level2_inputA, end_level2_inputB : std_logic_vector

(15 downto 0) ;

BEGIN

PROCESS (clock)

BEGIN

IF (clock = 'i' AND clock'EVENT) THEN

levell_inputA <= inputA;

levell_inputB <= inputB;

level2_inputA <= end_levell_inputA;

level2_inputB <= end_levell_inputB;

outputA <= end_level2_inputA;

outputB <- end_level2_inputB;

END IF;

END PROCESS;

end_levell_inputA <= signed(levell_inputA) *

signed (mul tiplierl) ;

end_levell_inputB <= signed(levell_inputB) *

signed (mul tiplierl) ;

end_level2_inputA <= signed(level2_inputA) *

signed (mul tiplier2) ;

end_level2_inputB <= signed(level2_inputB) *

signed (mul tiplier2) ;

END bal ance_reg_arch;

1. Read in the V H D L file.

dc_shell> read -format vhdl balance_reg, vhd

2. Set the design constraint..

dc_shell>
dc_shell>
clock
dc_she11>
inputA *
dc_shell>
inputB*
dc_she11>

current_design = balance_regent
create_clock -name clock -period 12

set_input_delay 2 -clock clock

set_input_delay 2 -clock clock

set input delay 2 -clock clock
mul tiplierl
dc_she11> set_inputdelay 2 -clock clock
multiplier2

| 8 0 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

3. Perform a m a p _ e f f o r t medium compilation on the design.

dc_shell> compile -map_effort medium
dc_shell> report_timing -path full -delay max -
max_paths 1 -nworst 1

4. The synthesized result shows a setup violation of 3.11 ns.

Information" Updating design information...

Report " timing
-path full
-delay max
-max_paths 1

Design : balance reg_ent
Version" 1998.02-1

Date �9 Wed Mar 17 09" 55" 51 1999

Operating Conditions :

Wire Loading Model Mode" top

Wire Loading Model Mode" top

(UID-85)

Design Wire Loading Model Library

balance_reg_ent 20x20 class

Startpoint �9 multiplier2 [0]
(input port clocked by clock)

Endpoint : outputB_reg[15]
(rising edge-triggered flip-flop clocked

by clock)

Path Group: clock
Path Type: max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay

multiplier2 [0] (in)
mul_3 8 /mul t/A [0]

(balance_reg_ent DWO2_mult 8 8 0)
mul_38/mult/U188/Z (NR2I)
mul_38/mult/U52/Z (AN2I)
mul_38/mult/U454/Z (ND2I)
mul_38/mult/U300/Z (AO3P)

0.00 0.00

0.00 0.00

2.00 2.00 f

0.00 2.00 f

0.00 2.00 f

0.65 2.65 r

0.43 3.08 r

0.22 3.29 f

O. 75 4.04 r

8.3 PERFORMANCE TWEAKS 181

Point Incr

mul_38/mult/UlO4/Z (ENI)
mul_38/mult/U491/Z (IVI)
mul_38/mult/U460/Z (ND2I)
mul_38/mult/U17/Z (AO3P)
mul_38/mult/U19/Z (IVI)
mul_38/mult/U50/Z (ENI)
mul_38/mult/U528/Z (MUX21L)
mul_38/mult/U172/Z (ENI)
mul_38/mult/U342/Z (ND2I)
mu l_ 3 8 /mu l t / U2 7 / Z (AN2 I)
mul_38/mult/U26/Z (MUX21LP)
mul_38/mult/U458/Z (ND2I)
mul_38/mult/U237/Z (ND2I)
mul_38/mult/U95/Z (NR2I)
mul_3 8 /mul t/FS/B9

(balance_reg_ent_DWO l_add_ 14_ 0)
mul_38/mul t/FS/U51/Z (IVI)
mul_38/mult/FS/Ul16/Z (ND2I)
mul_38/mul t /FS/U25/Z (AN2I)
mul_38/mult/FS/U68/Z (ND2I)
mul_38/mul t /FS/U69/Z (NR2I)
mul_38/mult/FS/Ul13/Z (ND2I)
mul_38/mul t /FS/U72/Z (AN2I)
mul_38/mult/FS/UlO1/Z (ND2I)
mul_38/mul t /FS/U79/Z (ND2I)
mul_38/mul t/FS/U21/Z (ND2I)
mul_38/mult/FS/U19/Z (NR2I)
mul_38/mul t /FS/U42/Z (ENI)
mul_3 8 /mul t/FS/SUMI 3

(balance reg_en t DWO 1_add_ 14_ 0)
mul_3 8 /mul t/PRODUCTI 5

(balance_reg_ent DW02_mult 8 8 0)
outputB_reg[15] /D (FD1)
data arrival time

clock clock (rise edge)

clock network delay (ideal)

outputB_reg[15] /CP (FDI)
library setup time

data required time

0.51

0.33

0.22

0.75

0.15

0.56

0.88

0.51

0.27

0.41

0.47

0.27

0.15

0.89

0.00

0.23

0.27

0.36

0.15

0.65

0.15

0.62

0.39

0.15

0.27

0.22

0.44

0.00

0.00

0.00

14.31

12.00

0.00

0.00

-0.80

data required time

data arrival time

Path

4.55 f

4.88 r

5.10 f

5.85 r

5.99 f

6.55 f

7.44 r

7.95 f

8.22 r

8.63 r

9.10 f

9.37 r

9.52 f

10.41 r

10.41 r

10.64 f

10.91 r

Ii. 27 r
11.43 f

12.07 r

12.22 f

12.84 f

13.23 r

13.38 f

13.65 r

13.87 f

14.31 f

14.31 f

14.31 f

14.31 f

12.00

12.00

12.00 r

ii .20

II .20

11.20

-14.31

slack (VIOLATED) -3. ii

J 8 ~- CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

5. Execute the balance_registers command.

dc_shell> balance_registers
dc_shell> report_timing -path full -delay max -

max_paths 1 -nworst 1

Information. Updating design information...

Report �9 timing
-path full
-delay max
-max_paths 1

Design : balance_reg_ent
Version" 1998.02-1

Date : Wed Mar 17 09" 59:39 1999

Operating Conditions.

Wire Loading Model Mode. top

(UID-85)

Design Wire Loading Model Library

balance_regent 20x20 class

Startpoin t �9 balance_reg_ent_REG125_Sl
(rising edge-triggered flip-flop clocked

by clock)

Endpoint : balance_reg_ent_REG45_S1

(rising edge-triggered flip-flop clocked

by clock)

Path Group: clock
Path Type : max

Point Incr Path

clock clock (rise edge) 0.00

clock network delay (ideal) 0.00

balance_reg_ent_REG125_Sl/CP (FDI) O . O0
balance_reg_ent_REG125_Sl/Q (FDI) 2.63
mul_35/mult/U29/Z (ND2I) O. 25
mul_35/mult/U55/Z (IVI) O . 26
mul_35/mult/U56/Z (ND2I) O. 42
mul_35/mult/U31/Z (ND2I) 0.33
mul_35/mult/U61/Z (IVI) O. 15
mul_35/mult/U47/Z (ND2I) O. 33
mul_35/mult/U70/Z (ND2I) 0.15

0.00

0.00

0.00 r

2.63 r

2.89 f

3.15 r

3.57 f

3.90 r

4.05 f

4.37 r

4.53 f

8.3 PERFORMANCE TWEAKS 183

Point Incr Path

mul_35/mult/U17/Z (ENI)
mul_35/mult/U89/Z (IVI)
mul_35/mult/U37/Z (ND2I)
mul_35/mult/U12/Z (NR2I)
mul_35/mult/FS/UlO/Z (IVI)
mul_35/mult/FS/U16/Z (ND2I)
mul_35/mult/FS/U17/Z (IVI)
mul_35/mult/FS/U15/Z (NR2I)
mul_35/mul t /FS/U18/Z (ND2I)
mul_35/mult/FS/U12/Z (ND2I)
mul_35/mult/FS/U20/Z (IVI)
mul_35/mul t /FS/U21/Z (ND2I)
mul_35/mul t /FS/U22/Z (ND2I)
mul_35/mult/FS/U24/Z (ND2I)
balance_reg_ent_REG45 Sl/D (FDI)
data arrival time

O. 51 5.04 f

0.26 5.30 r

0.32 5.62 f

1.14 6.76 r

0.15 6.90 f

0.33 7.23 r

0.15 7.38 f

0.65 8.03 r

0.15 8.18 f

0.42 8.60 r

0.15 8.75 f

0.27 9.02 r

0.15 9.17 f

0.27 9.44 r

0.00 9.44 r

9.44

clock clock (rise edge)

clock network delay (ideal)

balance_reg_ent_REG45 Sl/CP (FDI)
library setup time

data required time

12.00 12.00

0.00 12.00

O. O0 12. O0 r

-0.80 11.20

ii .20

data required time

data arrival time

ii .20

-9.44

slack (MET) i. 76

6. Timing now improves from negative 3.11 ns to positive slack of 1.76 ns.
Design Compiler has successfully moved logic from the second multiplier to
the first multiplier by using the balance_regis ters command.

7. Appendix D, which shows Top-Down Synthesis of the pipeline micro-
controller design example of Chapter 6, makes use of the command
balance_registers as well.

8.3.6 Usage of FSM Compiler to Optimize Finite State Machine

FSM Compiler is an option within Design compiler that allows unique optimiza-
tions for finite state machines. FSM Compiler also gives a designer the flexibility to
optimize a state machine design for speed performance or small area optimization.

In general, it is a good design practice for a designer to always partition a design
that has state machines to be in an independent module. However, combining random
logic with state machines is not a good partitioning practice.

| 8 4 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

I
D

>

FIGURE 75 Diagram Showing a Nonpartitioned Design.

I
I

FIGURE 76 Diagram Showing a Well-Partitioned State Machine Logic and Random Logic.

By isolating a state machine from the rest of random logic, FSM compiler can be
used to compile the state machine. This will allow the designer flexibility in choosing
different forms of encoding on the state machine.

Figure 75 shows a good example of a badly partitioned design. In this diagram,
state machine logic and random logic are clumped together in one piece. As a result,
Design Compiler is unable to independently optimize random logic and state
machine logic.

Figure 76 is a good example of good partitioning whereby a state machine is par-
titioned in a submodule separate from random logic. In this case, Design Compiler
can be used to optimize the submodule containing the random logic and state
machine logic independently.

To prepare a state machine design to be compiled using FSM, take the following
steps:

1. Read in the VHDL file.

dc_she11> read-format vhdl <filename.vhd>

8.3 PERFORMANCE TWEAKS 1 8 5

2. Map the design.

dc_shell> compile -map effort medium

3. Group the logic of the state machine. This includes grouping of state vector
flip-flops and their respective logic using g r o u p command. This step is not
needed if your design is well partitioned to consist only of state machine
logic.

dc_shell> set_fsm_state_vector {<flip-flop

name>, <flip-flop name> }

dc_shell> group-fsm-design_name

< f sm_des i gn_name>

4. Extract the finite state machine. This will extract the state machine from a
netlist format into a state table format. The order of the flip-flops must be
specified in the same order of state vector bits.

dc_shell> set fsm state_vector {<flip-flop

name>, <flip-flop name> }

dc_shell> set fsm_encoding {"$0=0", "SI=I",

"$2=2" } f e e e e e e e

dc shell> extract

5. Write the design in FSM format

dc_shell> write-format st -output

my state machine.st

6. If you already have a state machine design in FSM format, you can directly
read in the design

dc_shell> read-format st my_state_machine.st

7. Define the state ordering

dc_shell> set fsm_order {$0, $I, $2, }

8. Define the encoding style.

dc_shell > set fsm_encoding_styl e

<encoding_style>

| 8 ~ CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

<encoding_style> can be gray, binary, one-hot, or auto. If auto is
selected, Design Compiler will automatically generate any unassigned state
vector encodings.

9. Remove any redundant states. This is optional.

tic_shell> set_fsm_minimize true

10. Compile the state machine.

dc_shell> compile -map_effort high

The following example shows the synthesis of the traffic controller state machine
example of Chapter 5.4 with design constraints using FSM Compiler.

Filename: state_machine.vhd

dc_shell> read -format vhdl state_machine, vhd

tic_shell> current_design = state_machine_ent

tic_shell> create_clock EVALUATE -name clock -

period 5
tic_shell> set input_delay 2 GREEN-clock clock

tic_shell> set_input_delay 2 RED -clock clock

tic_shell> set_input_delay 2 YELLOW-clock clock

de_shell> set_output_delay 2 BRAKE -clock clock

tic_shell> set_output_delay 2 SPEED -clock clock

Compile the design with a map_effort medium option

tic_shell> compile -map_effort medium
de_shell> report_timing -path full -delay max -

max_paths 1 -nworst 1

Information: Updating design information... (UID-85)

Report �9 timing

-path full

-delay max

-max_paths 1

Design : state_machine_ent

Version: 1998.02-1

Date : Tue Mar 16 15" 40:45 1999

8.3 PERFORMANCE "I'~/EAKS 181

Operating Conditions.
Wire Loading Model Mode" top

Design Wire Loading Model Library

state_machine_ent 05x05 class

Startpoint: RED (input port clocked by clock)
Endpoint: BRAKE (output port clocked by clock)

Path Group: clock
Pa th Type : max

Point Incr Path
_

clock clock (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00

input external delay 2.00 2.00 f

RED (in) 0. O0 2.00 f
U/Z (NR2I) O. 57 2.57 r

U38/Z (ND2I) 0.19 2. 76 f
U53/Z (MUX21L) O. 45 3.21 r
U54/Z (IVI) O. 07 3.28 f
BRAKE (out) 0.00 3.28 f
data arrival time 3.28

clock clock (rise edge) 5.00 5.00
clock network delay (ideal) O. O0 5. O0

output external delay -2.00 3.00

data required time 3.00
.

data required time 3.00
data arrival time -3.28

slack (VIOLATED) -0.28

With a setup violation of 0.28 ns, the design is recompiled with FSM compiler.

dc_shell> extract
dc_shell> set_fsm_encoding_style one_hot
dc_shell> set fsm_order { $0 Sl $2 $3 }
dc_she11> set_fsm_encoding { "S0=2#1000"
"$I=2#0100" "$2=2#0010" "$3=2#0001" }
dc_shell> set_fsm_minimize true
dc_shell> compile -map_effort medium
dc_shell> report_timing -path full -delay max -
max_paths I -nworst I

1 8 8 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

The encoding style is set to one-hot to optimize the state machine to obtain the most
optimal synthesis results in terms of speed. However, area utilization will increase
with one-hot encoding.

Information: Updating design information... (UID-85)

Report : timing

-path full

-delay max

-max_paths I

Design �9 state_machine_ent

Version: 1998.02-1

Date �9 Tue Mar 16 15" 40" 52 1999

Operating Conditions.

Wire Loading Model Mode: top

Design Wire Loading Model Library

state_machine_ent 05x05 class

Startpoint: GRJ~EN (input port clocked by clock)

Endpoint: BRAKB (output port clocked by clock)

Path Group: clock

Path Type: max

Point Incr Path

clock clock (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

input external delay 2. O0 2. O0 r

GRJ~EN (in) O . O0 2. O0 r
U65/Z (IVI) O. 12 2.12 f

U73/Z (ND2I) 0.29 2.41 r

U64/Z (MUX21LP) O. 45 2.86 f

U71/Z (ND2I) O. 21 3.07 r

BRAKR (out) O . O0 3.07 r

data arrival time 3.07

clock clock (rise edge)

clock network delay (ideal)

output external delay

data required time

5.00 5.00

0.00 5.00

-2. O0 3. O0

3.00

data required time

data arrival time

3.00

-3.07

slack (VIOLATED) -0.07

8.3 PERFORMANCE "I-VVEAKS 189

A slack of -0.28 ns is reduced to -0.07 ns by using FSM Compiler to recompile
the state machine using one-hot encoding.

8.3.7 Choosing High-Speed Implementation for High-level
Functional Module

When coding VHDL, the designer can always use reserved symbols/keywords to
infer high-level functional modules. For example, to infer an adder, the designer need
not write the code for it. The symbol '+' will allow Design Compiler to infer an
adder. However, there are four different implementations for an adder.

TABLE 27 Description of Adder-lmplementationType

Implementation type Description

rpl Ripple carry

cla Carry look ahead

clf Fast carry look ahead

sim Simulation model

The implementation type sire is only for simulation. Implementation type rpl, cla
and clf are for synthesis; clf is the fastest implementation followed by c/a; the slow-
est is rpl.

During synthesis, if compilation of m a p _ e f f o r t low is used, implementation
selection of the adder will not change from current choice. However, if compilation
o f map_effort medium and above is used, implementation selection is based
on the optimization algorithm. Therefore, a designer should always try to use
m a p _ e f f o r t medium and above in order to allow Design Compiler to choose dif-
ferent implementations based on the optimizations of the design.

If compilation of nmp_e fgor t 2owis used, the designer can still manually change
the implementation selection by setting the variable see__inrp2~nneneaeion.

dc_shell> set_implementation
<implementation_type> <cell_list>

8.3.8 Balancing of Logic Trees with Heavy Loading

The concept of balancing of logic trees is very useful in designs that have very heavy
loadings. This is especially true if the design consists of any net that has a huge
fanout.

190 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

E X A M P L E 54 V H D L Code of an Inverter

Filename : balance_bur, vhd

LIBRAR Y IEEE;

USE IEEE. std_logic_l164.ALL;

ENTITY balance_buf_ent IS

PORT (

inputA : IN std_logic;

outputAl : OUT std_logic;

outputA2 : OUT std_logic

);

END balance_buf_ent ;

ARCHITECTURE balance_buf_arch OF balance_buf_ent IS

BEGIN

outputAl <= not inputA;

outputA2 <= not inputA;

END balance_buf_arch ;

From Example 54, outputAl and outputA2 are both inverted signals of inputA.

c_she11> read -format vhdl balance_buf.vhd
tic_shell> current_design = balance_buf_ent
dc_she11> create_clock -name clock -period 5
dc_shell> set_input_delay 1.5 -clock clock
inpu tA *
dc_she11> set_output_delay 2.0 -clock clock
ou tpu t *
dc_shell> set_wire_load 20x20
dc_she11> compi le -map_effort medi um

Synthesis results are shown in Fig. 77.

Use the command report_net to obtain a report on the net for this design.

inputA ~>O outputAl

outputA2

FIGURE 77' Diagram Showing Synthesized Circuit for balance_buf_ent.

8.3 PERFORMANCE TWEAKS m 91

dc_shell> report_net

Information. Updating design information...

Report : net

Design " balance_buf_ent

Version" 1998.02-1

Date : Tue Mar 23 17:23:01 1999

Opera ting Conditions.

Wire Loading Model Mode" top

(UID-85)

Design Wire Loading Model Library

balance_buf_ent 20x2 0 c l ass

Net Fanout Fanin Load Resistance Pins

Attributes

inputA 1 1 i. 86 O. O0 2

ou tpu tA2 2 1 i. 41 O . 00 3

Total 2 nets 3 2 3.27 0.00 5

Maximum 2 1 i. 86 O . 00 3

Average I. 50 i. O0 i. 63 O. O0 2.50

The loading on the output net is not too critical. But now let us assume the loading on
net outputA2 to be a large number, probably due to a large fanout or a long inter-
connect layout routing.

dc_shell> set_load 100 outputA2

The inverter synthesized by Design Compiler as shown in Fig. 77 will not be able to
drive such a large loading, which has now been set on the net ouepuea2. The delay
through this net would be large due to the heavy loading.

A simple solution that Design Compiler offers to fix problems such as these are
through the use of balance_buffer command. This command 'informs' Design
Compiler that a net tree needs to be balanced. Then Design Compiler will create
buffer trees to drive the large loading. Figure 78 shows the synthesized results after
b a l a n c e _ b u f f e r command is executed.

dc_shell> balance_buffer -depth 2 -to outputA2

dc_shell> report_net

192 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

Information" Updating design information... (UID-85)

Report �9 net

Design �9 balance_buf_ent

Version. 1998.02-1

Date �9 Tue Mar 23 17"23"01 1999

Operating Conditions"

Wire Loading Model Mode" top

Design Wire Loading Model Library

balance_buf_ent 20x20 c l as s

Net Fanout Fanin Load Resistance Pins

Attributes

inputA 1 1 i. 86 O . 00 2

n3 2 1 5.41 O. O0 3

outputAl 1 1 100. 86 O . 00 2

outputA2 1 1 100. 86 O. 00 2

Total 4 nets 5 4 208.99 0.00 9

Maximum 2 1 100.86 O. O0 3

Average i. 25 I. O0 52.25 O. O0 2.25

Figure 78 is different from Fig. 77 in the sense that two additional levels of inverter
are added to the output of the first inverter. This would allow inputA to be able to
drive the heavy loading on net outputAl and outputA2.

inputA

outputAl

outputA2

FIGURE 78 Diagram Showing Synthesized Circuit for b a l a n c e _ b u f _ e n t After
balance_buffer.

8.4 AREA O P T I M I Z A T I O N IN SYNTHESIS T W E A K S

Area optimization is obtained in synthesis through logic sharing. Design Compiler will
always optimize a design with timing requirements as the highest priority followed by
area. Several guidelines to obtain synthesis results with optimized area are as follows"

�9 do not use combinational logic as individual blocks;
�9 do not use glue logic between modules; and
�9 s e t _ m a x _ a r e a attribute

8.4 AREA OPTIMIZATION IN SYNTHESISTWEAKS I 9 3

8.4.1 Do Not Use Combinational Logic as Individual Blocks

Figure 79 shows module B as an independent block and separated from module A
and module C. This is not a good method to partition your design as Design Com-
piler is not able to optimize logic Y in module B with logic X in module A or logic Z
in module C. Design Compiler does not optimize, remove or add interface ports to a
design module. Therefore, it is unable to automatically break the hierarchy of mod-
ules A, B and C to optimize logic X, Y and Z. Figure 80 shows a better approach to
partition your design. The partitioning in Fig. 80 will enable Design Compiler to
optimize logic X, Y and Z.

A better-partitioned design in Fig. 80 removes module B and combines logic X, Y
and Z into a single combinational logic in module A. With this partitioning, com-
bined logic of X + Y + Z can be optimized by Design Compiler to create a faster and
smaller design.

module A module B

clock

module C

clock

FIGURE 79 Diagram Showing an Independent Combinational Logic Block.

clock ~ "

module A

D Q

module C

Q D

clock

F I G U R E 80 Diagram Showing Combinational Logic X, Y and Z Combined.

194 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

8.4.2 Do Not Use Glue Logic Between Modules

As seen in Fig. 79, if module B is removed and combinational logic Y is replaced
with a logic gate, this logic gate is referred to as glue logic. Its name comes from the
fact that this logic gate 'glues' module A and module C together.

The glue logic between module A and module C cannot be optimized into combi-
national logic X or combinational logic Z. The boundary of module A and module C
prevents Design Compiler from optimizing the glue logic into either logic X or logic
Z. To overcome this problem, the designer can use g r o u p command to create a new
block that consists of module A and the glue logic or module C and the glue logic.

To group the glue logic with module A:

dc_shell> group {II I2}

cell_name I4

-design_name module_B -

This will create a new module called module_B, which consists of module A and the
glue logic.

To group the glue logic with module C:

dc_shel 2 > group {I2 I3 }

cell_name I4

-design_name module_B -

This will create a new module called module_B, which consists of module C and the
glue logic.

Once the glue logic is combined with either module A or module C, an incremen-
tal compilation can be performed to allow Design Compiler to try to optimize away
the glue logic.

module A instance name:I 1

glue logic

instance name: 12

clock

module C instance name:I3

I clock

F I G U R E 81 Diagram Showing Glue Logic Between Module A and Module C.

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED I 9 5

8.4.3 s e t m a x a r e a Attribute

The set_max_area attribute is used by Design Compiler during synthesis opti-
mization to obtain minimum area utilization. However, Design Compiler will not -
optimize the area involving paths that have negative slack. Design Compiler gives
timing requirement the highest priority. Only when timing is met can Design Com-
piler optimize for area.

dc_shell> set_max_area 0.0
dc_shell> compile -map-effort high

8.5 F IX ING H O L D - T I M E V I O L A T I O N S IN $YNOPSYS

If a synthesized design has hold violations, the designer can set the attribute
set_f ix_hold to have Design Compiler fix the hold violations.

Fixing hold violations is a lot simpler in Design Compiler compared to fixing
setup violations. Synthesis tweaks and sometimes microarchitectural implementa-
tion tweaks are needed to fix setup violations but hold violations, are fixed automati-
cally by Synopsys by setting the set_fix_hold attribute.

tic_shell> set_fix_hold <clock_name>
dc_shell> compile -map_effort high -
incremental_mapping

During optimization, Design Compiler will insert delay at registers that are fed by
<clock_name>.

8.6 MISC SYNTHESIS C O M M A N D S GENERALLY USED

There are many synthesis commands for Synopsys's Design Compiler. This chapter
is a brief discussion of some of the commonly used synthesis commands.

�9 set_false_path
This command disables maximum and minimum timing checks on the men-
tioned path. It is used only for paths that are false and need not be considered
in timing checks.

From Fig. 82, assume that reset signal is a false path:

dc_shell> set_false_path -through reset

reset

FIGURE 82 Diagram Showing R.gSET as a False Path.

196 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

flip_flopl

input l D I CLK Q

clock

fllip_flop 2
signaiA D Q output I

CLK

FIGURE 83 Diagram Showing Multicycle Path.

�9 set_mul ticycle_path
Multicycle paths are paths that consist of logic that has delays of more than
one clock cycle. When a design has multicycle paths, it is important for the
designer to use the command set_mul tieycle_path to set those paths to
multicycle. This would 'inform' Design Compiler that a certain path that is
failing timing checks is in fact a multicycle path and hence Design Compiler
can spend more effort on fixing other critical nonmulticycle paths.

From Fig. 83, to set signalA as a multicycle path that requires 2 cycles:

dc_shell> set_multicycle_path 2 -from flip-
flop1/CLK-to flip_flop2/D

�9 set_min_delay & set_max_delay
If the designer knows for sure the minimum delay required from a start-point
to an end-point of a path, that delay can be set using s a t _ m / n d e 2 a y
command.

From Fig. 83"

tic_shell> set_min_delay <minimum_delay> -from

flip flop1/CLK-to flip flop2/D

Similarly, if a designer knows for sure the maximum delay required from a
start point to an end point of a path, that delay can be set using
set_max_delay command.

From Fig. 83"

dc_shell> set_max_delay <maximum_delay> -from

flip flop1/CLK-to flip_flop2/D

�9 set_max_transi tion
This command puts a limit on the maximum transition time allowed for a net.
Design Compiler will optimize the design and attempt to ensure that each net

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED | ~ '

has a transition time less than that which is specified in set_max_transi-
tion command:

dc_she11> set_max_transition <time_value>
<list_of_ports_or_designs>

For example, to set max transition of 1.0 ns on all design in current design
view,

tic_shell> designname = find (design. "*")
dc_shell> set_max_transition 1.0 design_name

�9 set_max fanout & set fanout_load

The command set_max_fanout sets the maximum number of fanout
allowed on an input port of a design:

dc_shell> set_max_fanout <fanout_number>

<1 i s t_o f_i npu t_port s_or_de s i gns >

As an example, to set a maximum fanout of 5 on all inputs of all designs in
current design view,

tic_shell> design_name = find (design, "*")

tic_shell> set_max_fanout 5 design_name

To set the fanout load on an output port of a design, use the command
set-- f anou t_l oad:

tic_shell> set_fanout_load <fanout_number>
< l i s t_o f_ou tpu t_~ort_name s >

In this example, to set a fanout load of 5 on all output ports in current design
view,

dc_shell> set fanout load 5 all_outputs()

�9 set_max_capaci tance

This command allows the designer to set maximum capacitance on a given
design or port. It is similar to s e t _ m a x t r a n s i t i o n but it uses the total
capacitance on a net as cost and not transition time:

dc_shell> set_max_capacitance

<capaci tance_val ue>
<list_of_port or_design_name>

I 98 CHAPTER 8 VHDL SYNTHESlS WITH TIMING CONSTRAINTS

Here, to set max capacitance of 5 on all designs in current design view,

dc shell> design_name = find (design, "*")
dc_shell> set_max_capacitance 5 design_name

�9 set_dont_touch
This command is used when any design, cell or net is not to be changed by
Design Compiler during optimization. However, the designer needs to be
careful when using this command. Synthesis resul{s may not be the most opti-
mal when this command is used:

tic_shell> set_dont_touch
<list_of_cells_nets_or_designs>

Thus to not allow D e s i g n C o m p i l e r to change the clock network:

dc_shell> set_dont_touch clock

�9 r e p o r t _ l i b

This command makes a report on the library that is stated with the command.
The listed command will make a report on all conditions in the library class.
Information such as operating conditions, wireload models, cells and others
a r e shown:

dc_shell> report_lib class

R e D o r t �9 l i b r a r y

Library: class

V e r s i o n : 1 9 9 8 . 0 2 - 1

D a t e : F r i Mar 26 2 3 . 0 9 : 4 4 1999

Library Type

Tool Created

Date Created

Library Versi on

Time Unit

Capacitive Load Unit

Pulling Resistance Unit

Voltage Unit

Curren t Unit

Bus Naming Style

: Technol ogy

: 1998.02

: February 7, 1992

: i. 800000

: ins

: O.lO0000ff

: ikilo-ohm

: IV

: IDA

: %s[%d] (default)

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 1 9 9

Operating Conditions.

Name Library Process Temp Volt Interconnect Model

WCCOM class i. 50 70. O0 4.75 worst_case_tree
WCIND class i. 50 85. O0 4.75 worst_case_tree
WCMIL class i. 50 125. O0 4.50 worst_case_tree

Input Voltages :

Name Vii Vih Vimin Vimax

CMOS_SCRgIITT i. 00 4.00 - O . 3 0 VDD + O . 3 00

Output Voltages.

Name Vo l Vo h Vo m i n Vomax

TTL 0.40 2.40 -0.30 VDD + 0. 300

default_wire_load_capacitance: i. 000000
default_wire_load_resistance: i. 000000
default_wire_load_area: i. 000000

Wire Loading Model.

Name

Location

Resistance

Capaci tance

Area

Slope

Fanout Length

05x05

class

0

1

0

0.186

Points Average Cap Std Deviation

1 0.39

Name

Location

Resistance

Capaci tance

Area

S1 ope

Fanout Length

1 Oxl 0

class

0

1

0

0.311

Points Average Cap Std Deviation

1 0 .53

~ , ~ CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

Name : 2 0x20

Location : class

Resistance �9 0

Capacitance : 1

Area : 0

S1 ope : 0.54 7

Fanout Length Points Average Cap Std Deviation

1 0.86

Wire Loading Model Selection Group"

Name �9 class

Selection

min area max area

Wire load name

0.00 1000.00 05x05

1000.00 2000.00 10x10

2000.00 3000.00 20x20

Wire Loading Model Mode. top.

Wire Loading Model Selection Group" class.

Porosity information"

No porosity information specified.

In_place optimization mode: match_footprint

Timing Ranges.

No timing ranges specified.

Compon en t s �9

Attributes.

af - active falling

ah - active high

al - active low

ar - active rising

b - black box (function unknown)

ce - clock enable

d - dont_touch

mo -- map_only

p -- preferred

r - removable

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 2 0 I

s - statetable

saO -- dont fault stuck-at-O

sal - dont fault stuck-at-I

saOl -- dont fault both stuck-at-O and stuck-at-I

t -- test cell

u -- dont use

Cel i Foo tprin t A t tribu t es

AN2

AN2 I

AN2 P

OR4

OR4P

"an2"

"an2"

�9 report_area

This command reports the number of references, nets, ports and cells in the
current design view. It also reports the area composed of combinational logic,
noncombinational logic and net interconnect area.

Example 55 shows synthesizable VHDL code for a 32-bit comparator.

EXAMPLE 55 SynthesizableVHDL Code for a 32-Bit Comparator

Fi i ename : compara t or. vhd

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

ENTITY comparator_ent IS

PORT (

inputA : IN std_logic_vector (31 downto 0);

inputB : IN std_logic_vector (31 downto 0);

output : OUT std_logic

);

END compara tor_en t;

ARCHITECTURE comparator_arch OF comparator_ent IS

BEGIN

output <= '0' WHEN (inputA /= inputB)

ELSE ' 1 ' ;

END compara tor_arch;

This module is synthesized using a set of design constraints.

~-0~- CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

dc_shell> read-format vhdl comparator.vhd
dc_shell> current_design = comparator_ent
dc_she11> create_clock -name clock -period 10
dc_she11> set_input_delay 3.0 -clock clock
inputA *
dc_shell> set_input_delay 3.0 -clock clock
inpu tS *
dc_she11> set_output_delay 3.0 -clock clock
output
dc_she11> compile -map_effort medium
dc_she11> report_area

Information" Updating design information... (UID-85)

Report �9 area

Design �9 comparator_ent

Version: 1998.02-1

Date �9 Fri Mar 26 23.09"44 1999

Library(s) Used"

class (File: /synopsys/libraries/syn/class.db)

Number of ports :

Number of nets"

Number of cells"

Number of references"

65

127

63

4

Combinational area,

Noncombinational area,

Net Interconnect area.

128.000000

0.000000

undefined (Wire load has

zero net area)

Total cell area"

Total area.

128.000000

undefined

From the report obtained, notice that the noncombinational area is zero while the
combinational area is 128 units. This means that the design e o m p a r a t o r _ e n t con-
sists only of combinational logic. There is no noncombinational logic in the synthe-
sized design. The report also shows the net interconnect area to be zero. This value of
zero occurs because there was no net area information in the wireload model used for
the design. Wireloads are net load models created by the designer using back-
annotated layout information. Wireload models are discussed in detail in Chapter 13.

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 2(}~

�9 report_cell

report_cell conlmand lists all the cells and subdesigns that are present in
the current design view. Using the same comparator as in Example 55, the
command r e p o r t _ c e l l makes a report on all the cells in the current design
of c o m p a r a t o r _ e n t .

dc_shel i > report_cel i

Report : cell

Design �9 comparator_ent

Version" 1998.02-1

Date �9 Fri Mar 26 23"09"44 1999

Attributes.

b - black box (unknown)

h - hierarchical

n - noncombinational

r - removable

u - contains unmapped logic

Cel i Re f erence Library

Attributes

Area

U6 AN21 class 2.00

U7 ND2I class i. 00

U8 ND2I class I. 00

U9 NR2I class i. O0

UIO ND21 class i. O0

UII ND2I class i. O0

UI2 NR2I class i. O0

UI3 ND2I class i. O0

U61 ENI class 3. O0

U62 ENI class 3. O0

U63 ENI class 3. O0

U64 ENI class 3. O0

U65 ENI class 3. O0

U66 ENI class 3.00

U67 ENI class 3. O0

U68 ENI class 3. O0

Total 63 cells 128.00

204 CHAPTER 8 VHDL SYNTHESlSWITH TIMING CONSTRAINTS

The first column of the report is the name of the cells in the design, the second
column is the reference name of the cell, the third column is the library name
and the final column is the area of the cell.

This command can also be used if the designer only wishes to have a report on
certain cells.

For example, if a report of cell 0'32 is needed, the list of cells would be 0'32.

dc_shell> report_cell 0"32

Report : cell

Design : comparator_ent

Version. 1998.02-1

Date : Fri Mar 26 23:09:44 1999

Attributes:

b - black box (unknown)

h - hierarchical

n - noncombinational

r - removabl e

u - con tains unmapped 1 ogi c

Cel i Re f erence Library

Attributes

Area

0"32 ND2I class i. O0

Total 1 cells 1.00

report_cell command is not only confined to obtaining general informa-
tion of a cell or a list of cells, but it is also very useful when a designer wants to
know the detailed interconnection information of the cell.

tic_shell> report_cell -connections U31

Report : cell

-connections

Design : comparator_ent

Version: 1998.02-1

Date : Fri Mar 26 23:09:44 1999

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 20~

Connections for cell 'U31' :

Reference. NR2I

Library: class

Input Pins Ne t

A n52

B n55

Ou tpu t Pins Net

Z n58

The report shows that cell o'31 is a two-input NOR gate (2NR is the cell o'31
reference name indicating a two-input NOR gate) with input pin A connected
to net aa52 and input pin B connected to net n 5 5 while output pin Z is con-
nected to net a58.

�9 report_net

The command report_net makes a report of all nets in the current design of
e o m p a r a t o r _ e n t . Command r e p o r t _ n e t options are similar to those of
report_cel l.

dc_shell> report_net <list_of_nets>

will report all the nets that are listed in the <list_of_nets>.

dc_shell> report_net <net> -connections

will report the connections of the < n e t >.

To obtain a report of all the nets in the current design:

dc_shell> report_net

Report : net

Design �9 comparator_ent

Version. 1998.02-1

Date �9 Fri Mar 26 23"09"44 1999

Operating Conditions.

Wire Loading Model Mode. top

~-i)~ CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

Design Wire Loading Model Library

compara tor_ en t 05x05 cl ass

Net

Attributes

Fanout Fanin Load Resistance Pins

inputA [0]
inputA [1]
inputA [2]
inputA [3]
inputA [4]
inpu tA [5]
. . o

. o ~

inputS [0]
inputS [1]
inputS [2]
inputS [3]
inputS [4]
inputS [5]
~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6

. ~ 1 7 6 1 7 6 1 7 6 1 7 6

n6
n7
n8
n9
nlO
. o ~ 1 7 6 1 7 6 1 7 6 1 7 6

~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6

n63
n64
n65
n66
n67

output

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 2.39 0.00 2

1 1 2.39 0.00 2

1 1 2.39 0.00 2

1 1 2.39 0.00 2

1 1 2.39 0.00 2

1 1 2.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 1.39 0.00 2

1 1 0.39 0.00 2

Total 127 nets 127

Maximum 1

Average i. O0

127 207.53 O. O0 254

1 2.39 0.00 2

1.00 1.63 0.00 2.00

From the report, the fourth column shows the loading on the net. The value of
this column changes with back-annotated information from layout. The fifth
column shows the resistance of the net. The current report shows resistance of
zero as there is currently no back-annotated information from layout.

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 2 0 7

�9 report_timing
This command is especially useful when performing timing analysis on a syn-
thesized design. Using the same design e o n ~ a r a e o r _ e n e of Example 55,
different timing reports are obtained through different options of this com-
mand.

To obtain a timing report of maximum delay:

dc_shell> report_timing -delay max

Report �9 timing

-path full
-delay max
-max_paths 1

Design �9 comparator_ent
Version. 1998.02-1

Date �9 Fri Mar 26 23"09"44 1999

Operating Conditions"

Wire Loading Model Mode. top

Design Wire Loading Model Library

compara t or-- en t 05x05 c l ass

Startpoint : inputA[l 7] (input port clocked by clock)

Endpoint: output (output port clocked by clock)

Path Group: clock
Path Type : max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay

inputA[17] (in)
U58/Z (ENI)
U25/Z (ND2I)

U27/Z (NR2I)

U28/Z (ND2I)

U36/Z (NR2I)

U6/Z (AN2 I)

output (out)
data arrival time

0 . 0 0 0 . 0 0
0 . 0 0 0 . 0 0
3 . 0 0 3 . 0 0 r

0 . 0 0 3 . 0 0 r

0 . 3 5 3 . 3 5 r

0.12 3.47 f

0.57 4.05 r

0.12 4.17 f

0.57 4.74 r

0.30 5.03 r

0.00 5.03 r

5.03

208 CHAPTER 8 VHDL SYNTHESlS WITH TIMING CONSTRAINTS

clock clock (rise edge)
clock network delay (ideal)

output external delay

data required time

i0.00 i0.00

0.00 i0.00

-3. O0 7. O0

7.00

data required time

data arrival time
7.00

-5.03

slack (MET) 1.97

To obtain a timing report of the two worst paths:

dc_shell> report_timing-nworst 2

Report �9 timing
-path full
-delay max
-nworst 2
-max_paths 2

Design �9 comparator_ent
Version. 1998.02-1

Date �9 Fri Mar 26 23.09.44 1999

Operating Condi tions .

Wire Loading Model Mode. top

Design Wire Loading Model Library

compara t or_en t 05xO 5 c l ass

Startpoint: inputA[17] (input port clocked by clock)

Endpoint: output (output port clocked by clock)

Path Group: clock
Path Type: max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay

inputA[17] (in)
U58/Z (ENI)

U25/Z (ND2I)

U27/Z (NR2I)

0.00 0.00

0.00 0.00

3.00 3.00 r

0.00 3.00 r

0.35 3.35 r

0.12 3.47 f

0.57 4.05 r

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 2 0 9

U28/Z (ND2I)

U36/Z (NR2I)

U6/Z (AN2 I)

output (out)

data arrival time

0.12 4.17 f

0.57 4.74 r

0.30 5.03 r

0.00 5.03 r

5.03

clock clock (rise edge)

clock network delay (ideal)

output external delay

data required time

10.00 10.00

0.00 10.00

-3.00 7.00

7.00

data required time

data arrival time

7.00

-5.03

slack (MET) i. 97

Startpoint: inputA[17] (input port clocked by clock)

Endpoint: output (output port clocked by clock)

Path Group: clock
Pa th Type : max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay

inputA [i 7] (in)
U58/Z (ENI)
U25/Z (ND2I)

U27/Z (NR2I)

U28/Z (ND2I)

U36/Z (NR2I)

U6/Z (AN2 I)

output (out)
data arrival time

0.00 0.00

0.00 0.00

3.00 3.00 f

0.00 3.00 f

0.35 3.35 r
0.12 3.47 f

0.57 4.05 r

0.12 4.17 f

0.57 4.74 r

0.30 5.03 r

0.00 5.03 r

5.03

clock clock (rise edge)

clock network delay (ideal)

output external delay

data required time

10.00 10.00

0.00 10.00

-3.00 7.00

7.00

data required time

data arrival time

7.00

-5.03

slack (MET) i. 97

'2 I 0 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

To obtain a timing report from one input to another:

dc_shell> report_timing -from inputA [01 -to
output

Performing report_timing on port

Performing report_timing on port

'inputA[O] '.

' ou tpu t '.

Report �9 timing
-path full
-delay max
-max_paths 1

Design �9 comparator_ent
Version : 1998.02-1

Date �9 Fri Mar 26 23"09"44 1999

Operating Conditions.

Wire Loading Model Mode" top

Design Wire Loading Model Library

compara tor_ent 05xO 5 c l ass

Startpoint: inputA[O] (input port clocked by clock)

Endpoint : output (output port clocked by clock)
Pa th Group: clock
Pa th Type: max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay

inputA[O] (in)

U47/Z (ENI)

UI5/Z (ND2I)

UI6/Z (NR2I)

U20/Z (ND2I)

U21/Z (NR2I)

U6/Z (AN2 I)

output (out)

data arrival time

clock clock (rise edge)

clock network delay (ideal)

0.00 0 .00
0 .00 0 .00
3 .00 3 .00 r

0.00 3 .00 r

0.35 3 . 3 5 r

0.12 3.47 f

0.57 4.05 r

0.12 4.17 f

0.57 4.74 r

0.30 5.03 r

0.00 5.03 r

5.03

10.00 i0.00
0.00 10.00

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 21 I

output external delay
data required time

- 3 . 0 0 7 . 0 0

7 . 0 0

data required time
data arrival time

7.00
-5.03

slack (MET) i. 97

�9 f i n d

The command f i n d is another very useful command that a designer can use
when searching for a certain element such as cell, net, reference, design, pin,
and even library.

To find nets in current design that start with the alphabet ' n "

dc_shell > find (net, "n* ")

{"n6", "n7", "n8", "n9", "n10", "n11", "n12", "n13",
"n14", "n15", "n16", "n17", "n18", "n19", "n20",
"n21", "n22", "n23", "n24", "n25", "n26", "n27",
"n28", "n29", "n30", "n31", "n32", "n33", "n34",
"n3 5 ",

"n36", "n37", "n38", "n39", "n40", "n41", "n42",
"n43", "n44", "n45", "n46", "n47", "n48", "n49",
"n50", "n51", "n52", "n53", "n54", "n55", "n56",
"n57", "n58", "n59", "n60", "n61", "n62", "n63",
"n64", "n65", "n66", "n67"}

To find cells in current design that starts with the alphabet ' o ' "

dc_she11> find (cell. "U*")

{"U6", "U7", "U8", "U9", "UIO", "Ul1", "0"12", "U13",
"U14", "U15", "U16", "U17", "U18", "U19", "U20".
"U21", "U22", "U23", "U24", "U25", "U26", "U27",
"U28", "U29", "U30", "U31", "U32", "U33", "U34",
"U35",

"U36", "U37", "U38", "U39", "U40", "U41", "U42",
"U43", "U44", "U45", "U46", "U47", "U48", "U49",
"U50", "U51", "U52", "U53", "U54", "U55", "U56",
"U57", "U58", "U59", "U60", "U61", "U62", "U63",
"U64", "U65", "U66", "U67", "U68 "}

~- | ~- CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

To find all ports in current design:

dc_shell> find (port, input *)

{"inputA[311 ", "inputA[30] ", "inputA[291 ",
"inputA[28] ", "inputA[27] ", "inputA[26] ",
"inputA[25] ", "inputA[24] ", "inputA[23] ",
"inputA[22] ", "inputA[21] ", "inputA[20] ",
"inputA [19] ", "inputA[18] ", "inputA [17] ",
"inputA[16] ", "inputA[15] ", "inputA[14] ",
"inputA[13] ", "inputA[12] ", "inputA[11] ",
"inputA[10] ", "inputA[9] ", "inputA[8] ",
"inputA[7] ", "inputA[6] ", "inputA[5] ", "inputA[4] ",
"inputA[3] ", "inputA[2] ".
"inputA[1] ", "inputA[O] ", "inputS[31] ",
"inputS[30] ", "inputS[29] ", "inputS[28] ",
"inputS[27] ", "inputS[26] ", "inputS[25] ",
"inputS[24] ", "inputS[23] ", "inputS[22] ",
"inputS[21] ", "inputS[20] ", "inputS[19] ",
"inputS[18] ", "inputS[17] ", "inputS[16] ",
"inputS[15] ", "inputS[14] ", "inputS[13] ",
"inputS[12] ", "inputS[t1] ", "inputS[10] ",
"inputS[9] ", "inputS[8] ", "inputS[7] ", "inputS[6] ",
"inputS[5] ", "inputS[4] ", "inputS[3] ", "inputS[2] ",
"inputS[l] ". "inputS[O] "}

�9 group-hdlblock
Blocks or different levels of hierarchy can be created in Design Compiler by
using the command g roup . This command would enable designers to group
together different cells and subdesigns to create a new hierarchy. This is simi-
lar to creating a new schematic for those cells that are grouped together.

tic_shell> group <cell_list> -design_name
<new_design_name> -cell name <new_cell name>

<cell_list> would be the list of cells or instance names that are to be
grouped together. For example, to group a list of 5 cells with instance names
I 1 , I 2 , I 3 , I4 and I 5 , assignanew design name of new_modu2e and
new cell name of INEW.

dc_shell> group {II, I2, I3, I4, I5} -
designname new_module -cell_name INEW

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 2 1 3

The group command can also be used to create levels of hierarchy for VHDL
code using the VHDL syntax of SZOCK.

Example 56 is a VHDL code of four AND gates. Two AND gates are inferred
in b 2 o c k l and the remaining two AND gates are inferred in b 2 o c k 2 .

EXAMPLE 56 VHDL Code for Inference of Four AND Gates Using
SLOCX statements

LIBRARY IEEE;

USE IEEE. std_logic_l164.ALL;

ENTITY more_bl ock_en t IS

PORT (

inputA : IN std_logic_vector (3 downto 0);

inputB : IN std_logic_vector (3 downto 0);

outputC : OUT std_logic_vector (3 downto O)

);

END more_bl ock_en t;

ARCHITECTURE more_bl ock_arch OF more_bl ock_en t IS

BEGIN

blockl : BLOCK

BEGIN

PROCESS (inputA, inputB)

BEGIN

FOR i IN 0 to 1 LOOP

outputC (i) <= inputA (i) AND

inpu tB (i) ;

END LOOP;

END PROCESS;

END BLOCK blockl ;

block2: BLOCK

BEGIN

PROCESS (inputA, inputB)

BEGIN

FOR i IN 2 to 3 LOOP

outputC (i) <= inputA (i) AND

inputB (i) ;

END LOOP;

END PROCESS;

END BLOCK bl ock2;

END more_bl ock_arch ;

2 14 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

The code of Example 56 is synthesized using the medium effort compile option.

tic_shell> read -format vhdl more_block, vhd
de_shell> current_design = more_block_ent
tic_shell> compile -map_effort medium

Figure 84 shows the synthesized AND gates.

The g r o u p command is used to create a block for b l o c k l .

tic_shell> group -hall_block blockl

Figure 85 shows b l o c k l being created as an additional level of hierarchy.

inputA (3 : 0) ~ inputA (3)
r ~ outputC (3)

inputB (3 : 0)~ inputB (3)
r I

FIGURE 84

inputA (2) F ~

k_> inputB (2)

outputC (3 : 0)

outputC (2)

inputA (1) ~ outputC (1)

inputB (1) k_J

inputA (0) ~ outputC (0)

inputB (0)

Diagram Showing Inference of Four AND Gates.

inputA (3 : 0) inputA (1 : 0)

inputB (3 : 0) ~ inputB (1 : 0)

inputA (2)

inputB (2)

blockl

inputA (3)

inputB (3)

outputC (1 : 0

outputC (2)

outputC (3)

outputC (3 : 0) .~

FIGURE 85 Diagram Showing Grouping of Two AND Gates into BLOCK1.

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 215

inputA (3 : 0) inputA 1 : 0)

inputB (3 �9 0) ~ inputB 1 : 0)

blockl

outputC (i : 0) outputC (3 : 0)

block2

inputA 3 : 2)
outputC (3 : 2)

inputB (3 : 2)

F I G U R E 86 Diagram Showing Grouping of AND Gates into BLOCK1 and BLOCK2

Another group command is used to create another block for b l o c k 2 .

dc_shell> group -hdl_block block2

Figure 86 shows both b l o c k l and b l o c k 2 being created.

The ungroup command can be used if the designer wishes to break the hierarchy of
blockl and block2.

dc_shel i > ungroup -al I

�9 GENERATEand LOOP Syntax in Synthesis
From Example 56 that shows VHDL code using BLOCK syntax, do you notice
how the LOOP syntax is used? In synthesis, a LOOP statement is rolled out
before it is synthesized.

EXAMPLE 57 Example of VHDL Code Using LOOPSyntax

LIBRARY IEEE ;

USE IEEE. s td_l ogi c_l 164. ALL;

ENTITY more_l ooD_en t IS

PORT (

inputA : IN std_logic_vector (3 downto 0);

inputB : IN std_logic_vector (3 downto 0);

outputC : OUT std_logic_vector (3 downto 0)

);

END more_l oop_en t;

2] 6 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

Roll out of the state-
ment occurs before
synthesis.

ARCHITECTURE more_l oop_arch OF more_l oop_en t IS

BEGIN

PROCESS (inpu tA, inpu tB)

BEGIN

FOR i IN 0 to 3 LOOP

outputC (i) <= inputA (i) AND inputB (i) ;

END LOOP;

END PROCESS;

END more_l oop_arch ;

Example 57 is rolled out into individual statements before it is synthesized.

outputC (0) <= inputA (0) AND inputS (0);

outputC (i) <= inputA (I) AND inputB (I);

outputC (2) <= inputA (2) AND inputS (2);

outputC (3) <= inputA (3) AND inputS (3);

The VHDL syntax of GENERATE also has the same function as that of LOOP syntax.
Example 58 shows VHDL code using GENERATE syntax. Both Examples 57 and 58
will synthesize to the same logic.

E X A M P L E 58 Example of V H D L Code Using GENERATE Syntax

LIBRAR Y IEEE;

USE IEEE. std_logic_l164 .ALL;

ENTITY more_generate_ent IS

PORT (

inputA : IN std_logic_vector (3 downto 0);

inputB : IN std_logic_vector (3 downto 0);

outputC : OUT std_logic_vector (3 downto 0)

);

END more_genera te_en t;

ARCHITECTURE more_generate_arch OF more_generate_ent IS

BEGIN

MULT_AND_gate: FOR i IN 0 to 3 GENERATE

outputC (i) <= inputA (i) AND inputB (i) ;

END GENERATE;

END more_genera te_arch;

�9 c o m p a r e _ d e s i g n

The command c o m p a r e d e s i g n can be used by the designer when he/she
wishes to compare the functionality of different designs using Boolean-
comparisons.

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 2 I 7

As already mentioned, GENERATE and LOOP syntax offer similar synthesis
results, thus we can use the e o m p a r e d e s i g n to compare the functionality
of synthesis results of Example 57 (using LOOP syntax) and Example 58
(using GENERATE syntax).

dc_shell> read-format db {more_loop_ent . db,

more_generate_ent . db}

dc_she11> compare_design -effort medium

more-genera t e_ en t more- i oop_en t

The effort option is used to specify the amount of CPU time to be used for
comparing the two designs.

Verifying Designs more_genera te_ ent and more--i oop_ent
(Medium effort) Verification Succeeded

The returned results of Design Compiler show that both the synthesized
results of LOOP syntax and GEt~'ERaTE syntax are functionally equal.

Apart from the two examples shown using LOOP and GENERATE syntax,
VHDL code in a LOOP syntax can also contain the syntax NEXT. Example 59
is a VHDL example using LOOP and NEXT syntax.

EXAMPLE 59 VHDL Example Using LOOPand NEXT

LIBRARY IEEE;

USE IEEE. std_logic_l164 . ALL;

ENTITY more_next_ent IS

PORT (

inputA : IN std_logic__vector (7 downto 0);

inputB : IN std_logic__vector (7 downto 0);

outputC : OUT std_logic_vector (7 downto 0)

);

END more_next_en t;

ARCHITECTURE more_next_arch OF more_next_ent IS

BEGIN

PROCESS (inputA, inputB)

BEGIN

FOR i IN 0 to 7 LOOP

IF (i < 4) THEN

NEXT;

ELSE

218 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

outputC (i) <= inputA (i) AND

inpu tB (i) ;

END IF;

END LOOP;

END PROCESS;

END more_next_arch;

When Example 59 is synthesized, synthesis results only show four AND gates. Bits
zero to bits three of i n p u t A and i n p u t s are left unconnected. When synthesis tool
observes the syntax argxT, it will skip the LOOP. Therefore, when rolled out, Exam-
ple 59 will appear as follows:

outputC (4) <= inputA (4) AND inputB (4);

outputC (5) <= ir4putA (5)AND inputB (5);

outputC (6) <= inputA (6) AND inputB (6);

outputC (7) <= inputA (7)AND inputB (7);

Figure 87 shows the synthesized result of Example 59. The logic circuit synthesized
consist only of four AND gates for inputA bits 4 to 7 and inputB bits 4 to 7.

Using this synthesized result, a design comparison is performed between this design
of Example 59 with the design of m o r e _ g e = e r a e e _ e a e of Example 58.

dc_shell> read-format db

{more_generate_ent . db, more_next_ent . db}

dc_she11> compare_design -effort medium
more_generate_ent more_next_ent

inputA (7 : 0)

inputB (7 : 0)._

F I G U R E 87
statement.

inputA (7) ~ outputC (7)

inputB (7)
outputC (7 : 0)

inputA (6) ~ outputC (6)

inputB (6)

inputA (5) ~ outputC (5)

inputB (5) k_J

inputB (4)
outputC (4)

Diagram Showing Synthesis Results of VHDL Code Using LOOP AND NEXT

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 2 I 9

Results from Design Compiler show that both of the designs are different and
the differences are listed in what follows.

In the original design endpoint outputC[3] is connected to a

non-constant net.

In the optimized design endpoint outputC[3] is unconnected.

In the original design endpoint outputC[l] is connected to a

non-constant net.

In the optimized design endpoint outputC[l] is unconnected.

In the original design endpoint outputC[2] is connected to a

non-constant net.

In the optimized design endpoint outputC[2] is unconnected.

In the original design endpoint outputC[O] is connected to a

non-constant net.

In the optimized design endpoint outputC[O] is unconnected.

Endpoint outputC[7] is not present in the original design.

In the optimized design endpoint outputC[7] is connected to a

non-constant net.

Endpoint outputC[5] is not present in the original design.

In the optimized design endpoint outputC[5] is connected to a

non-constant net.

Endpoint outputC[6] is not present in the original design.

In the optimized design endpoint outputC[6] is connected to a

non-constant net.

Endpoint outputC[4] is not present in the original design.

In the optimized design endpoint outputC[4] is connected to a

non-constant net.

Error. Could not align these output ports in optimized design

'more_next_ent ' �9 (FV-15)
outputC[4]

outputC[5]

outputC[6]

outputC[7]

Error. The following involve unconnected endpoints. (FV-14)

Endpoint more_generate_ent/outputC[O] is connected while

endpoint more_next_ent/outputC[O] is unconnected.

Endpoint more_generate ent/outputC[l] is connected while

endpoint more_next_ent/outputC[l] is unconnected.

Endpoint more_generate_ent/outputC[2] is connected while

endpoint more_next_ent/outputC[2] is unconnected.

Endpoint more_generate_ent/outputC[3] is connected while

endpoint more_next_ent/outputC[3] is unconnected.

Information. Verification Failed. (OPT-103)

Information. Verification terminated abnormally. (OPT-f00)

220 CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

�9 set_disable_timing

This command is used by a designer when there are timing arcs in a design
that the designer wishes to disable.

Example 60 shows an example of VHDL design that uses combinational feed-
back loops.

EXAMPLE 60 Design of VHDL Code Consisting of Combinational
Feedback Loop

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

ENTITY timing_arc_ent IS

PORT (inputA : IN std_logic;

inputB : IN std_logic;

inputC : IN std_logic;

selector : IN std_logic_vector (i downto 0);

output : OUT std_logic) ;

END timing_arc_en t;

ARCHITECTURE timing_arc_arch OF timing_arc_ent IS

SIGNAL internal_output : std_logic;

BEGIN

PROCESS (inputA, inputB, inputC, selector, internal_output)

BEGIN

CASE selector IS

WHEN "00" =>

internal_output <= inputA;

WHEN "01 " =>

internal_output <= inputB;

WHEN "i0" =>

internal_output <= inputC;

WHEN "ii" =>

internal_output <= internal_output;

WHEN OTHERS =>

NULL;

END CASE;

END PROCESS;

output <= internal_output;

END timing_arc_arch;

Input constraints are placed on the design and a medium-effort compilation is exe-
cuted.

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 2 2 1

dc_shell> read -format vhdl timing_arc, vhd
dc_shell> current_design = timing_arc_ent
dc_shell> create_clock -name clock -period 10
dc_shell> set_input delay 3 -clock clock inputA
dc_she11> set_input_delay 3 -clock clock inputS
dc_she11> set_input_delay 3 -clock clock inputC
dc_shell> set_input_delay 3 -clock clock
selector
dc_shell> set_output_delay 4 -clock clock
ou tpu t *
dc_shell> compile -map_effort medium

Note that when compile command is executed, Design Compiler will give a
warning that a timing arc between pins DATA4_O and z___O on cell
' * c e l l "5' is being disabled. The timing arc discovered by Design Com-

piler is restored when compilation is completed.

Loading design ' timing_arc_ent '

Beginning Resource Allocation (constraint driven)

Allocating blocks in 'timing_arc_ent '

Information" Timing loop detected. (OPT-150)

*cell *5/DATA4_O *cell *5/Z_ 0

Warning. Disabling timing arc between pins 'DATA4_O'

and 'Z_O ' on cell '*cell*5'

to break a timing loop (OPT-314)

Warning. Disabling timing arc between pins 'DATA4_O'

and 'Z_O' on cell '*cell*5'

to break a timing loop (OPT-314)

Allocating blocks in 'timing_arc_ent '

Information" Timing loop detected. (OPT-150)

cell *6/UI/UI/DATA4_O *cell *6/Ul/Ul/Z_O

Warning. Disabling timing arc between pins 'DATA4_O'

and 'Z 0' on cell '*cell*6/Ul/Ul'

to break a timing loop (OPT-314)

Beginning Mapping Optimizations (Medium effort)

Structuring ' timing_arc_ent '

Mapping ' timing_arc_ent '

Information" Changed wire load model for

'timing_arc_ent' from '(none)' to '05x05'. (OPT-170)

Information" Timing loop detected. (OPT-150)

*cell *9/syn154/A *cell *9/syn154/Z *cell *9/syn132/B

*cell *9/syn132/Z *cell *lO/S *cell *lO/Z *cell
*9/synl61/A *cell *9/syn161/Z

~-~-~- CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

Warning. Disabling timing arc between pins 'B' and

' Z ' on cell ' *cell *9/syn132 '

to break a timing loop (OPT-314)

TOTAL NEG DESIGN RULE

TRIALS AREA DELTA DELAY SLACK COST

Beginning Area-Recovery Phase (cleanup)

TOTAL NEG DESIGN RULE

TRIALS AREA DELTA DELAY SLACK COST

7 14.0 0.00 0.0 0.0

14

21

Optimization Complete

Transferring Design 'timing_arc_ent' to database

' timing_arc_ent, db '

To obtain knowledge of timing arcs in a design, report_ timing command can be
used as well.

dc_shell> report_timing -path full -delay max -

max_paths 1 -nworst 1

Information: Updating design information... (UID-85)

Information. Timing loop detected. (OPT-150)

UI6/A UI6/Z UII/B UII/Z UIO/B UIO/Z UI7/A UI7/Z

Warning: Disabling timing arc between pins 'B' and

'Z' on cell 'UII' to break a timing loop

(OPT-314)

8.6 MISC SYNTHESIS COMMANDS GENERALLY USED 22~

Report �9 timing

-path full

-delay max

-max_paths 1

Design �9 timing arc_ent

Version" 1998.02-1

Date : Sat Mar 27 14:58:22 1999

Operating Conditions.
Wire Loading Model Mode" top

Design Wire Loading Model Library

t iming_arc_ en t 05x 05 c i a s s

Startpoint. selector [0]

(input port clocked by clock)

Endpoint: output (output port clocked by clock)

Path Group: clock

Path Type : max

Point Incr Path

clock clock (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
input external delay 3.00 3.00

selector[O] (in) 0.00 3.00
UII/Z (MUX21L) O. 92 3.92
UIO/Z (MUX21L) O. 44 4.36
UIT/Z (IVI) 0.25 4.61
output (out) 0.00 4.61
data arrival time 4.61

clock clock (rise edge)
clock network delay (ideal)

output external delay

data required time

i0.00 i0.00
0.00 I0.00

-4.00 6.00

6.00

data required time

data arrival time
6.00

-4.61

slack (MET) i. 39

224 CHAPTER 8 VHDL SYNTHESlS WITH TIMING CONSTRAINTS

From the timing report, a timing arc is detected through these cells pins: 'UI6/A
UI6/Z UII/B UII/Z UIO/B UIO/Z UI7/A UI7/Z '. To disable this timing arc,
the command s e t _ d i s a b l e _ t i m i n g i s used on cell t r l l .

dc_shell> set_disable_timing {UII}

Apart from using report_timing to obtain a report on timing arcs,
repor t_des ign command can also be used. This command will make a
report on any timing arcs that are disabled in the current design (together with
a large amount of other information on the current design).

dc_shell> report_design

R e p o r t �9 d e s i g n

Design �9 timing_arc_ent

Version: 1998.02-1

D a t e �9 S a t M a r 2 7 1 5 . 0 4 " 4 9 1 9 9 9

Library(s) Used:

class (File. /synopsys/libraries/syn/class.db)

Local Link Library:

{class.rib}

F1 ip-Fl op Types"

No flip-flop types specified.

La t ch Types �9

No latch types specified.

Operating Conditions.

No operating conditions specified.

Wire Loading Model"

Selected automatically from the total cell area.

Name : 05x05

Location �9 class

Resistance �9 0

Capacitance �9 1

Area : 0

Slope : O. 186

Fanout Length Points Average Cap Std Deviation

1 0.39

Wire Loading Model Mode" top.

8.7 TOP-DOWNAND BOTTOMS-UP COMPILATION 2 2 5

Timing Ranges :
No timing ranges specified.

Pin Input Delays.
None specified.

Pin Output Delays,
None specified.

Disabled Timing Arcs.

Obj ec t Name From Pin To Pin

Cell

Required Licenses.

None Required

Design Parameters,

None specified.

Ull

Do you notice from the report that the cell o'21 is reported to be a disabled
timing arc?

Cell U I I t iming arc is
disabled.

8.7 T O P - D O W N A N D B O T T O M S - U P C O M P I L A T I O N

Top-Down and Bottoms-Up compilations are two methods used in synthesis compi-
lation, and both have advantages and disadvantages. To determine which is more
suitable to be used would depend on the design under consideration.

Top-Down compilation is easier to execute than Bottoms.Up compilation. In Top-
Down compilation, the designer need only be concemed with top-level design con-
straints. The design constraints of submodules in lower-level hierarchy need not be
considered. Submodule timing information is handled by Design Compiler from the
top-level hierarchy.

Figure 88 shows a TOP-level module containing five submodules A, B, C, D and
E. For Top-Down compilation, only the top-level inputs and outputs need to be con-
figured with timing information. However, submodules need not be configured with

TOP

F I G U R E 88 Diagram Showing a Top-Level Design Containing Five Submodules.

~,~-~ CHAPTER 8 VHDL SYNTHESIS WITH TIMING CONSTRAINTS

any timing information. During Top-Down compilation, Design Compiler will prop-
agate timing information from toplevel down towards submodules.

Top-Down compilation is not advisable for large designs. The compilation time
can be much longer by using the Top-Down compilation method, especially if the
design is large. However, if the design is too large, Design Compiler might crash due
to insufficient memory.

The compilation script for the design in Fig. 88 for a Top-Down compilation.

dc_shell> read -format vhdl {A. vhd, B. vhd,

C . vhd , D . vhd , E . vhd , TOP. vhd }

dc_shell> current_design = TOP_ent

dc_shell> {set the timing information for only

TOP level inputs and outputs}

dc_she11> compile -map_effort medium

When compiling large designs, it is advisable to use Bottoms-Up compilation. In this
method, compilation begins at the submodule level and moves up towards the top level.

tic_shell> read -format vhd2 {A. vhd, B. vhd,

C . vhd , D . vhd , E . vhd , TOP. vhd }

dc_shell> current_design = A_ent

dc_she11> {set timing information for sub-module A}

dc_she11> compile -map effort medium

dc_she11> set_dont_touch A_ent

dc_shell> current_design = B_ent
dc_she11> {set timing information for sub-module B}

dc_she11> compile -map effort medium

dc_shell> set dont_touch B_ent

dc_shell> currentdesign = C_ent

dc_shell> {set timing information for sub-module C}

dc_she11> compile -map_effort medium

dc_she11> set_dont_touch C_ent

tic_shell> current_design = D_ent

dc_she11> {set timing information for sub-module D}

dc_she11> compile -map_effort medium

dc_shell> set_dont_touch D_ent

dc_shell> current_design = E_ent

dc_she11> {set timing information for sub-module E}

dc_she11> compile -map_effort medium

tic_shell> set_dont_touch E_ent

dc_she11> current_design = TOP_ent

tic_shell> compile -map_effort medium

From the dc_she12 script, do you notice the difference between Top-Down
and Bottoms-Up compilation method? Do you notice that upon compilation of

8.7 TOP-DOWN AND BOTTOMS-UP COMPILATION 2 2 7

P ns Q ns

S ns T ns

R ns

TOP

FIGURE 89 Diagram Showing Time Budgeting for TOP-Level Module

each submodule, a set_dont_touch command is executed for the Bottoms-Up
compilation method? This would set a dont_toueh attribute on those submodules,
and would ensure that Design Compiler does not recompile these submodules during
compilation of the TOP-level module.

In the Bottoms-Up method, the designer needs to know the timing information for
the inputs and outputs for each submodule. However, the designer only has timing
information concerning the inputs and outputs of the TOP-level module. Therefore,
to obtain timing information for submodules based on the known timing information
for the TOP-level module, the designer needs to perform time budgeting on the sub-
modules.

From Fig. 89, each submodule is estimated to require a certain amount of time to
generate the outputs based on the inputs. For example, submodule A is estimated to
require P-ns delay from input to output, and submodule B is estimated to require Q-
ns delay from input to output.

With this estimated timing information on each of the submodules, each one of
them are compiled independently.

For designs that have many submodules, it may be difficult for the designer to
make manual time-budget estimations for each of the submodules. However, there
are tools on the market (for example, Synopsys's PrimeTime) with features that
allow for auto time budgeting on submodules.

Bottoms-Up compilation is usually much faster than Top-Down compilation.
However, in Bottoms-Up compilation, the designer needs to be fluent in making esti-
mations on time budgeting for each submodule. Top.Down compilation is a lot easier
because the designer need not be concerned with time-budgeting. However, the com-
pilation time of the Top-Down method is usually much longer than Bottoms-Up
compilation.

This Page Intentionally Left Blank

G T E C H

9
I N S T A N T I A T I O N

GTECH components are Synopsys components that are not mapped to any logic
function. These components are technology-independent but are functionally accu-
rate. During synthesis, Design Compiler will try to map GTECH components to
logic cells in the synthesis technology library that have the best match to the GTECH
component. If Design Compiler is unable to find such a match, it will use equivalent
logic cells to build the component.

EXAMPLE 61 Instantiation of aGTECH XNOR4 Component

LIBRARY IEEE;

USE IEEE. std_logic_l164. ALL;

LIBRARY GTECH;

USE GTECH. GTECH_componen ts . ALL;

ENTITY gtech_xnor_ent IS

PORT (

inputl : IN std_logic;

input2 : IN std_logic;

input3 : IN std_logic;

input4 : IN std_logic;

outputl : OUT std_logic

);

END gtech_xnor_en t;

229

2 3 0 CHAPTER9 GTECH INSTANTIATION

inputl
input2 ~ ~
input3
input4

outputl

FIGURE 90 Diagram Showing GTECH XNOR4 Mapped to Four-Input XNOR Logic Cell.

inputl

input2

input3

input4

outputl

FIGURE 91 Diagram Showing GTECH XNOR4 Mapped to Two-Input XNOR Logic Cell and Two-
Input XOR Logic Cell.

ARCHITECTURE gtech_xnor_arch OF gtech_xnor_ent IS

BEGIN

-- instantiate GTECH_XNOR4

DUT : GTECH_XNOR4 port map (inputl, input2, input3, input4,

ou tpu tl) ;

END gt ech_xnor_arch ;

From Example 61, which shows the instantiation of a four-input GTECH XNOR
component, if the synthesis technology library has a four-input XNOR logic cell, the
GTECH component would map to the four-input XNOR logic cell (see Fig. 90).
However, if Design Compiler can only find two-input XNOR and two-input XOR
logic cells, the GTECH component will map to the circuit shown in Fig. 91.

10
D E S I G N W A R E LIBRARY

Design Ware is a library that consists of high-level functional modules that allow a
designer the flexibility to infer them in VHDL code. Examples of VHDL code that
infers DesignWare components are as follows"

output <= inputl + input2;

output <= inputl - input2;

output <= inputl * input2.

Apart from inferring Design Ware components, the designer can also instantiate
these components. However, the designer must realize that some of the components
in the DesignWare library are defined in Synopsys's standard synthetic library while
others are not. Further, the components that are supported by Synopsys's standard
synthetic library can be directly instantiated or inferred from the VHDL code. For the
other remaining components that are not defined, the designer MUST set the variable
synthetic_library to point to the DesignWare sldb file. This file MUST
also be included to the link__libraryvariable.

Example 62 is a VHDL file that instantiates Asynchronous FIFO Controller
With Dynamic Flag Logic (DWO3__fifoent2 a d f) component from Design-
Ware library DW03.

EXAMPLE 62 VHDL Showing DesignWare Component Instantiation

LIBRARY IEEE, DW03, DWARE;

USE IEEE. std_logic_l164 . ALL;

USE DWARE. DWpackages . ALL;

USE DW03 . DWO3_componen ts . ALL;

231

2 3 ~ CHAPTER 10 DESIGNWARE LIBRARY

ENTITY designware_ent IS

GENERIC (depth : INTEGER := 16) ;

PORT (level : IN std_logic_vector (bit_width(depth)-i downto 0);

wrqb : IN std_logic;

rrqb : IN std_logic;

test_mode : IN std_logic;

reset : IN std_logic;

w_addr : OUT std_logic_vector (bit_width(depth)-i downto

0);

r_addr : OUT std_logic_vector (bit_width(depth)-i downto

0);

web : OUT std_l ogi c ;

full : OUT std_logic;

empty : OUT std_logic;

threshold : OUT std_logic

);

END designware_en t;

ARCHITECTURE designware_arch OF designware_ent IS

BEGIN

INSTI: DW03_fifocntl a df GENERIC MAP (depth => depth)

PORT MAP (level => level,

wrqb => wrqb,

rrqb => rrqb,

test_mode => test_mode,

reset => reset,

w_addr => w_addr,

r_addr => r_addr ,

web => web,

full => full,

empty => empty,

threshold => threshold) ;

END designware_arch;

CONFIGURATION designware_config OF designware_ent IS

FOR designware_arch

FOR INSTI : DWO3_fifocntl a df

USE ENTITY DW03.DW03_fifocntl a df (str) ;

END FOR;

END FOR;

END designware_conf ig;

This component is not defined in Synopsys's standard synthetic library (stan-
dard. sldb). Therefore, in order to allow Design Compiler to be able to instantiate

CHAPTER I0 DESIGNWARE LIBRARY 2 3 3

this Design Ware component,
2 ink__2 i b r a r y must be set.

the variables synthetic_library and

dc_shell> synthetic_library = dwO3.sldb
dc_shell> link library = link_library + dwO3.sldb

Only when these two variables are set can the component be instantiated. If these
variables are not set to point the s y n t h e t i e _ _ 2 i b r a r y t o dw03. s l a b , upon com-
pilation Design Compiler will give a warning message that the component
DWO3_fifocntl a df is not mapped.

In order to view the components that are defined in Synopsys's standard synthetic
library, use the command report_synl ib.

dc_shell> report_synlib standard, sldb

Example 63 is a VHDL code that instantiates the SRAM module from DesignWare
library DW03. However for this example, the SRAM module that is instantiated
requires another DesignWare module that cannot be referenced by Design Compiler.

EXAMPLE 63 VHDL Code for Instantiation of SRAM Module from
DesignWare DW03 Library

r,IB~RY IEEE, DW03, DW01, DWARE;

USE IEEE. std_logic_l164. ALL;

USE DWARE. DWpackages . ALL;

USE DW03 . DW03_componen ts . ALL;

USE DWOI . DWOl_componen ts . ALL;

ENTITY sram_en t IS

GENERIC (

data_width : INTEGER := 16;

depth : INTEGER := 64);

PORT (

datain : IN std_logic_vector (data_width-i downto 0);

waddr : IN std_logic_vector (bit_width(depth)-i downto 0);

raddr : IN std_logic_vector (bit_width(depth)-i downto 0);

wrb : IN std_logic;

rdb : IN std_logic;

test_mode : IN std_logic;

clk : IN std_logic;

dataout : OUT std_logic_vector (data_width-i downto 0)) ;

END sram_en t;

2 3 4 CHAPTER I0 DESIGNWARE LIBRARY

ARCHITECTURE sram_arch OF sram_ent IS

BEGIN

SRAM_UO: DWO3_ram2 s 1

GENERIC MAP (depth => depth,

data_width => data_width)

PORT MAP (datain => datain,

waddr => waddr,

raddr => raddr,

wrb => wrb,

rdb => rdb,

test_mode => test_mode,

clk => clk,

dataout => dataout) ;

END sram_arch ;

--pragma transla te_off

CONFIGURATION sram_config OF sram_ent IS

FOR sram_arch

FOR SRAM_UO: DWO3_ram2 s 1 USE CONFIGURATION

DWO 3 . DWO 3_ram2 s 1 c f g_s im ;

END FOR;

END FOR;

END sram_config;

--pragma transla te_on

The SRAM module of Example 63 is 16-bits wide (designated by d a e a _ w i d t h)

and has a depth of 64 (designated by dept:h). When this example is read into D e s i g n

C o m p i l e r and compiled, an error will occur.

dc_shell> read-format vhdl sram.vhd
dc_shell> current_design = sram_ent
dc_she11> compile -map_effort medium

Error: Cannot find the synthetic library implementation 'str' of module
' D W O l _ d e e o d e ' . (SYNDB-20)

The error message states that the SRAM module being instantiated cannot be
found in the current pointed DesignWare library. This module is from
D W O l _ d e c o d e from DesignWare library DW01. To check this error message, the
setting of variable synthethic_libraryand 2ink_libraryis echoed.

dc_she11> echo synthethic_library
tic_shell > echo i ink_ library

10.1 CREATINGYOUR OWN DESIGNWARE LIBRARY 2 3 5

{class. db standard, db dw03 . sldb}

Both the variable s y n t h e t h i c _ l i b r a r y and l i n k _ l i b r a r y are pointing to
s t a n d a r d , s ldb , c l a s s , db and dw03. s l a b . At present, there are no links to
DesignWare library DWO1, which is exactly why Design Compiler is giving the error
message that it cannot find module DWOl_module .

To solve this problem, the variables s y a t h e t h i c _ l i b r a r y and l i n k _
l i b r a r y are made to point to the existing links as well as dwO1. s l a b .

dc_shell> synthethic_library = synthethic_library +

dwOl . sldb

dc_shell> link_library = link_library + dwOl.sldb

With these variables set, a recompile will be successful.

10.1 C R E A T I N G Y O U R O W N D E S I G N W A R E L I B R A R Y

DesignWare libraries are a good method for designing reuse of certain components.
By keeping reusable components in a Design Ware library, a designer can easily
reuse that same design in multiple designs.

Example 64 is similar to the VHDL shifter example of Chapter 5, except that in
this example the Shifter can be of any bits wide.

E X A M P L E 64 V H D L C o d e of an N - B i t Shi f ter

Filename : MY_DW_shifter. vhd

LIBRARY IEEE;

USE IEEE. std_logic_l164 . ALL;

ENTITY MY_DW_shi fter IS

GENERIC (width : INTEGER) ;

PORT (

data : IN std_logic_vector(width-i downto 0);

load : IN std_logic;

enable : IN std_logic;

clock : IN std_logic;

mode : IN std_logic_vector (i downto 0);

output : OUT std_logic_vector (width-I downto 0)

);

END MY_DW_shi fter;

Generic declaration of
width to specify the
width of the shifter.

~-36 CHAPTER 10 DESIGNWARE LIBRARY

ARCHITECTURE arch OF MY_DW_shifter IS

SIGNAL internal_output : std_logic_vector (width-i downto 0);

BEGIN

PROCESS (clock)

BEGIN

IF (clock = 'I' AND clock'EVENT) THEN

IF (enable = '0') THEN

IF (load = '0') THEN

internal_output <= data;

ELSE

IF (mode = "00 ") THEN

-- shift left

internal_output <=

in ternal_ou tpu t (wi dth-2

downto O) & '0';

ELSIF (mode = "Ol ") THEN

-- shift right

internal_output <= '0' &

internal_output (width-i

downto i) ;

ELSIF (mode = "I0 ") THEN

-- shift barrel right

internal_output <=

internal_output (0) &

internal_output (width-i

downto i) ;

ELSIF (mode = "ii ") THEN

-- shift barrel left

internal_output <=

in ternal_ou tpu t (wi dth-2

downto O) &

in ternal_ou tpu t (width- 1) ;

ELSE

internal_output <= (others =>

'0');

END IF;

ELSE

END IF;

END IF;

internal_output <= (others => '0') ;

END IF;

END PROCESS;

ou tpu t <= internal_ou tpu t;

END arch;

,0., c R ~ r , N O u o w n DES,ONWARE USURY 2 3 7

Before using this shifter to create a DesignWare component, the shifter is first ana-
lyzed into a library defined with the library name W~DW.

unix> mkdir MY_DW
unix> dc_shell
tic_shell> define_design_lib MY DW -path ./MY_DW
dc_shell> analyze -format vhdl -lib MY_DW
MY_DW_shi fter. vhd

To ensure that the shifter design is in the library defined with the name I~n,_DW, the
command report_design_lib is used.

dc_shell> report_design_lib MY_DW

Contents of current design libraries

MY_DW (/SYN/VHDL/MY_DW)
Entity . p MY_DW_shifter
Architecture : m MY_DW_shifter (arch)

p--- This design has parameters.
m-- This architecture is the most recently

analyzed.

s-- This file is out of date with respect to its

source.

Now that the shifter design has been analyzed and stored into MY_DW library, a
synthetic library description for the shifter is written. This synthetic library descrip-
tion will contain descriptions to the input and output pins of the shifter, information
on the width of the pins and the desired implementation of the shifter.

Filename: MY_DW_SL.sl

library (MY_DW_SL. sldb) { ~

module (MY_DW_shifter) {

design_library : "MY_DW" -,q.....__~

parameter (width) {

hdl_parameter : TRUE;

}

pin (data) {

direction : input;

bit_width : "width ";
}

Declaration of
MY_DW_SL library

~ 1 Declaration of design
library name

Declaration of pin
direction and bit size

238 CHAPTER 10 DESlGNWARE LIBRARY

Declaration of
implementation name
of the shifter

pin (load) {

direction : input;

bit_width : "I";

}

pin (enable) {

direction : input;

bit_width : "I ";

}

pin (clock) {

direction : input;

bit_width : "i";

}

pin (mode) {

direction : input;

bit_width : "2 ";

}

pin (output) {

direction : output;

bit_width : "width";

}

~- implementation (arch) {}

}

The synthetic library description is compiled and linked to the variables
synthethi c_l ibrary and link_library.

dc_she11> read_lib MY_DW_SL. sl

tic_she11> write_2ib MY_DW_SL. sldb

dc_shell> synthethic_library = {standard. sldb,
MY_DW_SL . s l db }

dc_she11> link_library = link_library +

MY_DW_SL . s l db

Upon completion of these commands, we have created a DesignWare component
called W~_DW_ohigter in a DesignWare library t~_DW. Example 65 shows a
VHDL code instantiating the newly created DesignWare component
MY_DW_shi f ter.

I0.1 CREATINGYOUROWN DESlGNWARE LIBRARY 2 3 9

EXAMPLE 65 V H D L Code to Instantiate MY_DW_shifter

Filename: MY_DW_shifter_infer.vhd

LIBRARY IEEE;

USE IEEE. std_logic_ll 64. ALL;

ENTITY shifter_infer_ent IS

GENERIC (width : INTEGER := 4) ;

PORT (

data : IN std_logic_vector(width-I downto O);

load : IN std_logic;

enable : IN std_logic;

clock : IN std_logic;

mode : IN std_logic_vector (i downto 0);

output : OUT std_logic_vector (width-i downto O)

);

END shifter_infer_ent;

ARCHITECTURE shifter_infer_arch OF shifter_infer_ent IS

COMPONENT MY_DW_shi f ter

GENERIC (width : INTEGER);

PORT (

data : IN std_logic_vector(width-I downto O);

load : IN std_logic;

enable : IN std_logic;

clock : IN std_logic;

mode : IN std_logic_vector (i downto 0);

output : OUT std_logic_vector (width-i downto O)

);

END COMPONENT;

BEGIN

DUT_shi f ter : MY_DW_shi f ter

GENERIC MAP (width => width)

PORT MAP (

data => data,

load => load,

enable => enable,

clock -> clock,

mode => mode,

output => output

);

END shi fter_infer_arch;

240 CHAPTER 10 DESlGNWARE LIBRARY

Example 65 is compiled. Synthesis results will show the
MY_DW_shifter being instantiated in shifter_infer_eat design.

component

dc_shell> read -format vhdl MY_DW_shifter_infer.
vhd
dc_she11> currentdesign = shifter_infer_ent
dc_she11> compile -map_effort medium

Loading target library 'class '

Loading design 'shifter_infer_ent '

Information. Design 'shifter_infer_ent ' has no

optimization constraints set. (OPT-108)

Beginning Resource Allocation (area only)

Allocating blocks in 'shifter_infer_ent '

Allocating blocks in 'shifter_infer_ent '

Allocating blocks in 'MY_DW_shifter_4 '

Allocating blocks in 'MY_DW_shifter_4 '

Building model 'MY_DW_shifter_4' (arch)

Information. Changed wire load model for 'MY_DW_

shifter_4' from ' (none) ' to '05x05'. (OPT-170)

Structuring 'shifter_infer_ent_MY_DW_shifter 40'

Mapping ' shifter_infer_ent_MY_DW_shifter 40'

Selecting implementations in 'shifter_infer_ent '

Beginning Mapping Optimizations (Medium effort)

Information. Changed wire load model for

'shifter_infer_ent ' from ' (none) ' to '05x05'. (OPT-

170)
Structuring 'shifter_infer_ent_MY_DW_shifter 40'

Mapping ' shi f ter_inf er_ent_MY_DW_shi f ter 4 0 '

Selecting implementations in ' shifter_infer_ent '

TOTAL NEG DESIGN RULE

TRIALS AREA DELTA DELAY SLACK COST

10. I CREATINGYOUR O W N DESIGNWARE LIBRARY 2 4 1

Beginning Area-Recovery Phase (cleanup)
_ _

TRIALS

TOTAL NEG DESIGN RULE

AREA DELTA DELAY SLACK COST

88

88

Optimization Complete

Transferring Design ' shifter_infer_ent_MY_DW_

shifter 4 0' to database 'sl~ifter infer ent.db'

Transferring Design 'shifter_infer_ent' to data-

base ' shifter_infer_ent, db '

Current design is 'shifter_infer_ent'.

A DesignWare shifter is successfully created from the shifter code of Example 64.

This Page Intentionally Left Blank

I I
TESTABIL ITY ISSUES IN SYNTHESIS

With the growing complexity of ASIC designs, one important factor that every
designer needs to consider is the testability of the design. In today's ASIC designs, a
design is not considered complete if testability of the design is not taken into account.
An important reason that testability of a design has come into play is the very fact
that the cost of testing a design in the manufacturing process takes a rather large per-
centage of the total cost of manufacturing the very design itself.

A manufactured ASIC chip based on a certain design that does not take into
account testability may have many defects that are not detected during the testing
phase of manufacturing. Such defects would render the chip useless and therefore a
mechanism must be established to enable those defects to be caught during the test-
ing phase. Most easily observable defects are the 'stuck-at zero' and 'stuck-at-one'
faults.

To address this design-testability issue, many test methodologies have been intro-
duced. However, the most widely used test methodology is the scan technique. In this
technique, all sequential elements in a design are replaced with a scan-equivalent ele-
ment that uses a certain scan style on which the designer chooses to implement.
There are several scan styles that can be used but the one most commonly used is the
multiplexed flip-flop scan style.

Apart from the scan style, the designer also needs to consider the scan methodol-
ogy involved, and make a decision on whether to use a full scan method or a partial
scan method. A full scan method involves replacing all the sequential elements in a
design with a scan equivalent. A partial scan method involves replacing only part of
the sequential elements in design with scan equivalents. Whichever method is used
by the designer would greatly depend on the design being considered. Replacing all
sequential cells with a scan equivalent would obviously give a high fault-coverage
value as a partial scan method can only yield a certain percentage of fault coverage.
The percentage obtained would depend largely on the selected sequential cells that

243

244 CHAPTER II TESTABILITY ISSUES IN SYNTHESIS

are replaced by scan equivalents. At this point, the reader may question why a full
scan method is not always used as it does yield a higher fault coverage? The answer
to that question comes down to the final area and timing considerations of a design.
Replacing sequential elements with their scan equivalents always increases the area
of the design as well as the timing of the logic paths covered by the scan equivalents.
Therefore, whether a partial scan method or full scan method is used would depend
largely on whether the designer can afford to compromise the additional area and
timing requirements that are introduced with full scan methods.

In general, test insertion should be done after synthesis and before layout. Figure
92 shows a synthesis/layout flow with test insertion.

I1.1 M U L T I P L E X E D FLIP-FLOP S C A N STYLE

In this scan style, as the name suggests, a flip-flop is replaced with its scan equiva-
lent, which is a multiplexed flip-flop. This scan-equivalent cell has four inputs and
one output, which allows for the 'test-scanning' of a design.

Description of use of each of the inputs and the output is as follows:

�9 D a t a ~ This pin has the data-in information for a normal flip-flop when the
scan mode is not enabled.

�9 S c a n d a t a - i n m This pin has the scan data-in information during a scan mode
�9 S c a n e n a b l e ~ This pin is the scan mode pin. It is used to select the input to

the multiplexer that is used as the input to the flip-flop.
�9 C l o c k ~ S c a n c l o c k ~ This pin is used as the normal clock pin during nonscan

modes and the scan clock pin during the scan mode.
�9 D a t a ~ S c a n d a t a - o u t ~ The information on this pin could either be the data-

out for a normal mode or scan mode depending on whether the scan mode is
enabled.

RTL coding

Simulation

t

N -'~ Layout

Synthesis I, Test insertion II T
FIGURE 92 Diagram Showing Synthesis/Layout Flow Involving Test Insertion.

I1.1 MULTIPLEXED FLIP-FLOP SCAN STYLE 2 4 5

The use of these pins is different in scan mode than during nonscan mode. Figure
94 shows the multiplexed flip-flop being used during the scan mode and during the
nonscan mode.

Figure 94 shows that there are two modes in which the design can operate. The
Scan Mode (Scan enable is pulled to a logical' 1') and Normal Mode (Scan enable is
pulled to a logical '0').

During Scan Mode:

�9 Scan enable is pulled to a logical '1.' Because this signal is connected to the
select signal of the multiplexer, the data going into the input of the flip-flop
would always be the Scan in-data. Therefore, the data coming out of the flip-
flop would always be the Scan out-data.

�9 The input to the clock of the flip-flop would be the Scan clock

During Normal Mode:

�9 Scan enable is pulled to a logical '0.' The input to the flip-flop would always be
the data from the combinational logic A. Therefore, the output from the flip-
flop would always be the normal data from combinational logic A.

�9 The input to the clock of the flip-flop would be the normal clock of the
design.

Data

Scan in-data i

Scan enable

Clock/Scan clock

D Q Data/Scan out-data

FIGURE 93 Diagram Showing a Multiplexed Flip-Flop Used as a Scan-Equivalent Cell.

Data-In

Scan in-data

Scan enable

Clock/Scan clock F

D Q Data-out

FIGURE 94 Diagram Showing Use of Multiplexed Flip-flop during Scan Mode and Normal Mode.

246 CHAPTER II TESTABILITY ISSUES IN SYNTHESIS

For a design that has more than one flip-flop, all the flip-flops in the design are
replaced by a multiplexed flip-flop for the full scan method. All these multiplexed
flip-flops are then connected together to form a scan chain. This would enable a scan
in-data to pass from one multiplexed flip-flop to another multiplexed flip-flop during
every scan clock cycle. Figure 95 shows how a scan chain is implemented on a full-
scale design with more than one flip-flop.

In Fig. 95, do you notice how all the multiplexed flip-flops are connected together
to form a scan chain to scan out data? Figure 95 is a design with three multiplexed
flip-flops. Therefore, it would require three Scan clock cycles to scan out data from
the Scan in-data port. In general, an N-stage scan chain would require N scan clock
cycles to scan out data from the scan in-data port.

11.2 U S I N G S Y N O P S Y S T E S T C O M P I L E R F O R S C A N I N S E R T I O N

Apart from Design Compiler and FSM Compiler, Synopsys's synthesis tool also
comes with Test Compiler. Test Compiler allows a designer to implement testability
features in the design. When a designer wishes to implement scan methodology in
a design, it is important for the designer to remember not to use any of the scan-
equivalent cells in the technology library during synthesis. The scan-equivalent cells
will be used to replace the synthesized sequential cells during scan insertion using
Test Compiler.

Data-In

Scan in-data

Scan enable

Clock/Scan clock

Data-out/
Scan data-
out q D

I

Clock/Scan clock

D Q

Q D
<0

can enable

Clock/Scan clock

FIGURE 95 Diagram Showing a Scan Chain for a Design.

II.2 USING SYNOPSYSTEST COMPILER FOR SCAN INSERTION 24

Using the same shifter example as in Chapter 5, the VHDL code is recompiled
with the same set of design constraints used in Appendix B. However, in this synthe-
sis compilation, Design Compiler is instructed not to use scan-equivalent cells during
synthesis.

dc_shell> read -format vhdl shifter.vhd
dc_shell> currentdesign = shifter_ent
dc_shell> set_scan_style multiplexed_flip_flop

The command set_scan_style would ensure that Design Compiler does not use
the multiplexed flip-flop during synthesis of the shifter design.

dc_shell> create_clock clock -name clock -period 5
dc_shell> setinputdelay 2.3 -max -clock clock
data *
dc_shell> set input_delay 2.3 -max -clock clock
enable
dc_shell> set input_delay 2.3 -max -clock clock

load
dc_shell> set inputdelay 2.5 -max -clock clock
mode *
dc_shell> compile -mapeffort medium

During compilation, you will notice that Design Compiler issues a message 'Infor-
mation: Choosing a test methodology will restrict the optimization of sequential
cells. (UIO-12)'. This message informs the designer that the synthesis results of the
shifter design may not be the most optimum for sequential cells. This is because we
have chosen a specific scan style, therefore not allowing Design Compiler to use
multiplexed flip-flop in the synthesis of the shifter design.

Information. Choosing a test methodology will

restrict the optimization of sequential cells.

(UIO-12)

Loading target library 'class '

Loading design 'shifter_ent '

Beginning Resource Allocation (constraint driven)

Structuring ' shifter_ent '

Mapping ' shifter_ent '

Allocating blocks in 'shifter_ent '

Allocating blocks in 'shifter_ent '

'2,48 CHAPTER II TESTABILITY ISSUES IN SYNTHESIS

Beginning Mapping Optimizations (Medium effort)

Structuring ' shifter ent

Mapping ' shifter_ent '

Information" Changed wire load model for

' shifter_ent ' from ' (none) ' to '05x05'. (OPT-170)

TOTAL NEG DESIGN RULE

TRIALS AREA DELTA DELAY SLACK COST

53 86.0 O. 08 O. 1 O. 0

1 86.0 0.08 0.i 0.0

1 86.0 0.08 0.i 0.0

1 86.0 0.08 0.1 0.0

8 86.0 0.00 0.0 0.0

1 86.0 0.00 0.0 0.0

1 86.0 0.00 0.0 0.0

3

94

Beginning Area-Recovery Phase (cleanup)

TOTAL NEG DESIGN RULE

TRIALS AREA DELTA DELAY SLACK COST

152

152

Optimization Complete

Transferring Design 'shifter_ent' to database

' shifter_ent, db '

Current design is 'shifter ent'.

Once compilation of the design is complete, the set_test_methodology com-
mand can be used to set either a full scan or a partial scan method. The command
c h e c k _ e e s e is also executed to check the design prior to and after scan insertion.

dc_shell> set_test_methodology full_scan

dc_shell> check_test

11.2 USING SYNOPSYSTEST COMPILER FOR SCAN INSERTION ~,,4~

Loading design ' shifter_ent '

Information �9 Starting test design rule checking�9

(TEST-222)

...full scan rules enabled...

.. �9 checks.�9149

.. �9 sequential cell checks�9149149

.. �9 combinational feedback loops�9149149

...inferring test protocol�9149

Information: Inferred system~test clock port clock

(45.0,55.0). (TEST-260)

�9 ..simulating parallel vector�9

...simulating parallel vector...

...simulating serial scan-in...

�9 ..simulating parallel vector�9

.. �9 scan-in state.�9149

�9 ..simulating parallel vector�9 ..

.. �9 capture clock rising edge at port

clock�9 . .

.. �9 capture clock falling edge at port

clock�9 . .

.. �9 capture clock groups.�9149

Information: Inferred capture clock group : clock�9

(TEST-262)

...binding scan-out state.�9149

�9 ..simulating serial scan-out...

�9 ..simulating parallel vector�9

Information: Test design rule checking completed.

(TEST-123)

T e s t D e s i g n R u l e V i o l a t i o n Summary

Total violations �9 0

S e q u e n t i a l C e l l Summary

0 out of 4 sequential cells have violations

SEQUENTIAL CELLS WITHOUT VIOLATIONS

* 4 cells are valid scan cells

~SJ) CHAPTER II TESTABILITY ISSUES IN SYNTHESIS

Set how many scan chains you want and insert the scan chain.

tic_shell> set_scan_configuration-chain_count 1
tic_shell > insert_scan

Loading design 'shifter_ent '
Using test design rule information from previous

check_ test run
Archi tecting Scan Chains
Inserting Scan Cells
Routing Scan Chains
Routing Global Signals
Mapping New Logic
Beginning Mapping Optimizations

TOTAL NEG DESIGN RULE
TRIALS AREA DELTA DELAY SLACK COST

17 94.0 0.48 1.9 0.0
1 94.0 0.48 1.9 0.0
9 97.0 0.46 1.7 0.0

15 98.0 O. 44 i. 7 O. 0
1 98.0 0.44 i. 7 0.0
1 98.0 O. 44 i. 7 O. 0

Ii 98.0 0.42 1.6 0.0
7 i01.0 0.40 1.5 0.0

37

99

Transferring design 'shifter_ent' to database
' shifter_ent, db'

With the chain already inserted, group the core logic into a new level of hierarchy.

tic_shell> group -design_name Core -cell name
shifter ent filter(find(cell "*") "- __ f

(@is_combination
al == true) // (@is_sequential == true) //
(@is_hierarchical == true) // (@is_black_box ==

true) ")

I 1.2 USING SYNOPSYSTEST COMPILER FOR SCAN INSERTION 2 ~]

Performing filter on cell 'U9'.

Performing filter on cell 'UIO'.

Performing filter on cell 'UII'.

Performing filter on cell 'UI2'.

Performing filter on cell 'UI3'.

Performing filter on cell 'UI4'.

Performing filter on cell 'UI5'.

Performing filter on cell 'UI6'.

Performing filter on cell 'UI7'.

Performing filter on cell 'UI8'.

Performing filter on cell 'UI9'.

Performing filter on cell 'U20'.

Performing filter on cell 'U21'.

Performing filter on cell 'U22'.

Performing filter on cell 'U23'.

Performing filter on cell 'U24'.

Performing filter on cell 'U25'.

Performing filter on cell 'U26'.

Performing filter on cell 'U27'.

Performing filter on cell 'U28'.

Performing group on cell

Performing group on cell

Performing group on cell

Performing group on cell

Performing group on cell

Performing group on cell

'U54 ' �9

'U55 ' �9

' internal_output_reg [01 ' �9

' internal_output_reg [I] '.

' internal_output_reg [2] '.

' internal_output_reg [3] '.

Insert the JTAG using the -no_pads options. This option will inform Test Compiler
not to insert any pad cells.

dc_shell > insert_j tag -no_pads

Information. 2-bit JTAG Instruction Register (IR)

being synthesized. (TEST-232)

Initiating JTAG Boundary Scan synthesis on

' shifter_ent ' . . .

- Synthesizing the TAP Controller ...

- Synthesizing the Instruction Register ...

- Synthesizing the Instruction decode logic ...

- Synthesizing the Bypass Register ...

~-5 ~- CHAPTER I I TESTABILITY ISSUES IN SYNTHESIS

- Synthesizing the Boundary Scan Register ...

-Transferring (new) design 'JTAG_BSRINCLKOBS' to

database shifter_ent . db

-Transferring (new) design 'JTAG_BSRINBOTH' to data-

base shifter_ent . db

-Transferring (new) design 'JTAG_BSROUTBOTH' to

database shifter_ent, db

- Synthesizing the TDI and TDO Logic ...

-Transferring (new) design 'JTAG_TAP' to database

shi f ter_ent . db

-Transferring (new) design 'JTAG_BR' to database

shi fter_ent . db

Warning: Target library contains no replacement for

register 'JTAG_IR/OUT_BIT_I ' (**FFGEN**) . (TRANS-4)

Warning: Target library contains no replacement for

register 'JTAG_IR/OUT_BIT_O ' (**FFGEN**) . (TRANS-4)

-Transferring (new) design 'JTAG_IR2' to database

shi f t er_en t . db

- Eliminating generic logic ...

- Updating db design ...

- Transferring design 'shifter_ent' to database

shi fter_ent . db ...

JTAG Boundary Scan synthesis completed for

' shifter_ent '.

Test Compiler will issue a warning 'Warning: Target library contains no replace-
ment for register ' JTAG_IR/OUT_BIT_ 1 ' (* *FFGEN* *). (TRANS-4) ' as

the technology library on which synthesis is based (class. d.b) does not contain any
register cells with the functionality required for Design Compiler to map to. There-
fore, it is very important for the designer to realize that prior to inserting testability
functions into a design, the technology library on which the design is mapped must
have the relevant information to support testability insertions.

However, if the technology library on which the synthesis is based does contain
all the relevant cells for testability insertion, the following commands are common
commands used in Test Compiler to complete the test insertion.

�9 w r i t e - f o r m a t r i b - b i e r - o u t p u t m y _ j t a g . d b

Usage: Save the database into my_j t a g . db filename
�9 set_port_ispad <list_of_ports>

Usage: Pads will be inserted to all ports listed in < l i s t _ o f _ _ p o r t s >
�9 insert_pads

Usage: This command when executed will insert pads into ports that have the
s e t _ _ p o r t _ i s__pad attribute.
�9 create_test_patterns

Usage: This command will execute ATPG (Auto Test Pattern Generator) and
create a vector file.

12
FPGA SYNTHESIS

The Field Programmable Gate Array (FPGA) is used extensively in ASIC designs,
especially in prototyping new logic devices. These new designs can be programmed
into FPGA very quickly and verified with minimum cost.

The following examples are based on the Xilinx FPGA 4000E synthesis library.
When synthesizing a VHDL design into FPGA, it is essential for the designer to

follow certain steps (refer to Fig. 96).
From Fig. 96, a verified VHDL source code is read into Design Compiler. A set of

design constraints is then set on the design. Following this, the command
insert_pads is executed. This command is used to map I/O pads to the pins of the
design. Other commands that can be used together with this command are as follows:
set_pad_ type and set_port_is_pad.

set_port is_pad <list_of_ports> <list_of designs>

set_pad_type <pad_type_name> <list_of_ports>

The command set_port_is_pad would place attributes on the list of ports used
in the command. The attributes would enable Design Compiler to map I/O pads to
those pads. The command set_pad_type enables the designer to choose the type
of I/O pad to which the respective port is to be mapped.

Once pad mapping is completed, the designer can then proceed to compile the
design. When compilation is completed (assuming that the set of design constraints
set earlier is met; if not, the designer can optimize the synthesized design), the
designer executes the command replace_ fpga and finally writes out the database.

The rep2ace_fpga command is very useful to the designer especially when the
designer wants to convert the synthesized database (which consists of configurable
logic blocks [CLB] and input/output blocks [IOB]) into schematics containing logic
gates. This would allow the designer to view the schematics of the design with logic
gates instead of CLB and IOB.

253

2 5 4 CHAPTER 12 FPGA SYNTHESIS

Verified VHDL file

u

Read-inVHDL file Write-out database

u

Set design constraints

u

Insert pads

Execute replace_fpga
command

u

Compile/Synthesize

FIGURE 96 Diagram Showing Flow of Steps for Synthesizing a Design into FPGA.

Note: Each Xilinx FPGA consists of CLB and lOB; CLB are programmable logic
blocks that can be used to program combinational logic, sequential logic, three-
state devices and even decoder logic. The CLB are used to implement the required
combinational and sequential logic (including decoders and three-state devices)
of a design. The IOB are blocks that can be programmed into input ports, output
ports or I/O ports.

The VHDL example of the shifter design of Chapter 5 is read into Design Com-
piler and a set of design constraints is set on the ports of the shifter.

dc_shell> read -format vhdl shifter.vhd

dc_shell> create_clock clock -name clock -period

15

dc_shell> set input_delay 2.3 -max -clock clock

data*

dc_shell> set_input_delay 2.3 -max -clock clock

enable

dc_shell> set_input_delay 2.3 -max -clock clock

load

dc_shell> set_input_delay 2.5 -max -clock clock

mode *

When the constraints have been set on the design, the command
net_port__is_~ad is executed to set the po re_ i s__pad attribute on the design.

CHAPTER 12 FPGA SYNTHESIS 2 ~ 5

tic_shell> setport_is_pad

Once the p o r t _ i s_Apad attribute has been set, the command i n s e r t Apads is exe-
cuted to map the pins with p o r t i s _ _ . p a d attribute to I/0 pads.

dc_shel i > insert_pads

Loading design 'shifter_ent '

Inserting IO Pads in Design 'shifter_ent'

Transferring Design 'shifter_ent' to database

' shifter ent. db'
Current design is 'shifter_ent '.

When the I/0 pads are inserted, the design is compiled.

dc_shell> compile -map_effort high

Loading design 'shifter_ent '

Beginning Mapping Optimizations

Structuring ' shifter_ent '

Mapping ' shifter_ent '

(High effort)

TOTAL NEG

TRIALS AREA DELTA DELAY SLACK

DESIGN RULE

COST

Beginning Area-Recovery Phase (cleanup)

TOTAL NEG DESIGN RULE

TRIALS AREA DELTA DELAY SLACK COST

24

24

Optimization Complete

Transferring Design 'shifter ent' to database

' shi f t er_en t . db '

Current design is 'shifter_ent '.

2 ~ 6 CHAPTER 12 FPGASYNTHESIS

Upon completion of compilation, report_timing is executed to check for timing.

dc_shell> report_timing -path full -delay max -
max_~aths 1 -nworst 1

Information: Updating design information...

Report �9 timing
-path full
-delay max
-max_paths 1

Design �9 shifter_ent
Version. 1998.02-1

Date : Sun Apr 11 00:05:26 1999

(UID-85)

Operating Conditions" WCCOM Library: xfpga_4000e-2
Wire Loading Model Mode" top

Startpoint: mode[O] (input port clocked by clock)

Endpoint : internal_output_reg [O]
(rising edge-triggered flip-flop clocked by

clock)

Path Group: clock
Pa th Type : max

Point Incr Path

clock clock (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00

input external delay 2.50 2.50 r

mode[O] (in) 0.00 2.50 r

U84/PAD (iob_4000) 0.00 2.50 r

U84/II (iob_4000) 2.05 4.55 r

UIIO/X (clb_4000) 1.60 6.15 f

UIO8/X (clb_4000) 2.73 8.88 r

internal_output_reg[O] /O (iob_4000) O. O0 8.88 r
data arrival time 8.88

clock clock (rise edge)

clock network delay (ideal)

internal_output_reg[O] /OK (iob_4000)

library setup time

data required time

1 5 . 0 0 1 5 . 0 0
0 .00 1 5 . 0 0
O. O0 15. O0 r

- 3 . 7 8 1 1 . 2 2
1 1 . 2 2

CHAPTER 12 FPGASYNTHESIS 2 5 7

data required time

data arrival time

ii .22

-8.88

slack (MET) 2.34

With timing checked to meet specification, report_area and report_cell a r e

executed to obtain a report on the area and cell used.

dc_shell> report_area
dc_shell> report_cell

Report �9 area

Design �9 shifter_ent

Version. 1998.02-1

Date �9 Sun Apr ii 00" 05" 30 1999

Library (s) Used.

xfpga_4000e-2 (File. /XILINX_FPGA_LIB/

xfpga_4 0 0 0e-2 . db)

Number of ports" 13

Number of nets" 55

Number of cells" 19

Number of references. 2

Combinational area.

Noncombina tional area �9

Net Interconnect area.

0.000000

19.000000

undefined

spec i f i ed)

Total cell area. 19. 000000

Total area. undefined

1

design_analyzer> report_cell

(No wire load

Report �9 cell

Design �9 shifter_ent

Version. 1998.02-1

Date �9 Sun Apr ii 00.05.37 1999

2~ 8 CHAPTER, 12 FPGA SYNTHESlS

Attributes"

b - black box (unknown)

h - hierarchical

n - noncombinational

r - removabl e

u - contains unmapped logic

Cell Reference Library

Attributes

U79 iob_4000 xfpga_4000e-2

US1 iob_4000 xfpga_4000e-2

U84 iob_4000 xfpga_4OOOe-2

U86 iob_4000 xfpga_4OOOe-2

U88 iob_4000 xfpga_4OOOe-2

ugo iob_4000 xfpga_4OOOe-2

U92 iob_4000 xfpga_4OOOe-2

U94 iob_4000 xfpga_4OOOe-2

U96 iob_4000 xfpga_4OOOe-2

U98 iob_4000 xfpga_4OOOe-2

UIO0 iob_4000 xfpga_4OOOe-2

UI02 clb_4000 xfpga_4OOOe-2

U104 clb_4000 xfpga_4OOOe-2

UI06 clb_4000 xfpga_4OOOe-2

UI08 clb_4000 xfpga_4OOOe-2

UllO clb_4000 xfpga_4OOOe-2

UII2 clb_4000 xfpga_4OOOe-2

internal_

output_reg[O] iob_4000 xfpga_4000e-2

internal_

output_reg[3] iob_4000 xfpga_4000e-2

Total 19 cells

Detailed FPGA Configuration Information"

Cell Name: U79 TYPE" IOB

OUT: 0

PAD Ii . I2. TRI .

Cell Name. U81

OUT: 0

PAD

TYPE. IOB

Ii �9 I2" TRI "

Cel i Name: U84

OUT. 0

PAD: FAST

TYPE. IOB

Ii �9 PAD I2. TRI :

Area

1 . 0 0 n

1 . 0 0 n

1 . 0 0 n

1 . 0 0 n

1 . 0 0 n

1 . 0 0 n

1 . 0 0 n

1 . 0 0 n

1.00 n

1.00 n

1.00 n

1.00 n

1.00 n

1.00 n

1.00 n

1.00 n

1.00 n

1.00 n

1.00 n

19.00

CHAPTER 12 FPGA SYNTHESlS ~-59

Cel i Name : U86 TYPE: IOB

OUT: 0

PAD: FAST Ii : PAD I2 : TRI .

Cell Name: U88 TYPE: IOB

OUT: 0

PAD: FAST Ii : PAD I2 : TRI :

Cel i Name : U90 TYPE: IOB

OUT: 0

PAD: FAST I 1 : PAD I2 : TRI :

Cel i Name: U92 TYPE: IOB

OUT: 0

PAD: FAST Ii : PAD I2 : TRI :

Cel i Name: U94 TYPE: IOB

OUT: 0

PAD: FAST Ii : PAD I2 : TRI :

Cel i Name : U96 TYPE: IOB

OUT: 0

PAD: FAST Ii : PAD I2 : TRI :

Cell Name: U98 TYPE: IOB

OUT: 0

PAD: FAST II : PAD I2 : TRI :

Cell Name: U100 TYPE: IOB

OUT: 0

PAD: FAST Ii : PAD I2 : TRI :

Cell Name: UI02 TYPE: CLB

X:F Y: XQ: YQ:

HI : DIN: SR : EC :

DX : DY : FFX : NOT FFY : NOT

EQUATE F = ((El F2' F3 F4) + (El F2' F3' F4'))

Cell Name: UI04 TYPE: CLB

X:F Y:G XQ:

HI : DIN: SR :

DX : DY : FFX : NOT

EQUATE F = (El F2 ')

EQUATE G = (GI ' G2 ')

we~
EC:

FFY : NOT

260 CHAPTER 12 FPGASYNTHESlS

Cel i Name. U106 TYPE: CLB

X: Y: xo . OX YQ . O Y

HI �9 C4 DIN: SR . EC .

DX " H DY : H FFX " K FFY" K

EQUATE F = ((El F3) + (F2 F4))

EQUATE G = G1

EQUATE H = (F + (HI G))

FFX_NAME : *cell "110 FFY_NAME" internal_out-

pU t_reg [2]

Cell Name. U108 TYPE: CLB

X " H Y: xo . OX

HI �9 DIN: SR "

DX " H D Y : FFX : K

EQUATE F = (FI F2 F3 F4)

EQUATE G = ((GI G3) + (G2 G4))

EQUATE H = (F + G)

FFX_NAME " *cell *98 FFY_NAME :

Q "

EC"

FFY : NOT

Cell Name. UIIO TYPE. CLB

X " F Y: xo " OX YQ . O Y

HI �9 C4 DIN: SR " EC .

DX: H D Y: H FFX: K FFY: K

EQUATE F = ((El F2' F3' F4) + (El F2' F3 F4'))

EQUATE G = ((GI G3) + (G2 G4))

EQUATE H = (G + (HI F))

FFX_NAME" *cell "104 FFY NAME: internal_out-

pu t_reg [1]

Cell Name. UII2 TYPE" CLB

X " H Y: XQ " Qx

HI �9 DIN. SR "

DX: H DY. FFX: K

EQUATE F = (F2 El' F3 F4)

EQUATE G = ((G2 G3) + (GI G4))

EQUATE H = (F + G)

FFX_NAME : *cell "116 FFY_NAME :

YO.
EC"

FFY : NOT

Cell Name. internal output_reg[O] TYPE: IOB

OUT: OQ : RESET: OK

PAD Ii �9 I2" TRI "

INFF_NAME " OUT_NAME: internal_output_reg [0]

CHAPTER 12 FPGA SYNTHESIS 2 6 1

Cell Name. internal_output_reg[3] TYPE" IOB

OUT" OQ : RESET: OK

PAD Ii �9 I2 �9 TRI "

INFF_NAME " OUT_NAME" internal_output_reg [3]

With a report on area and cells obtained, r e p o r t _ f p g a command can also be exe-
cuted to obtain information on the FPGA database.

dc_shell> report_fpga-one_level

Report �9 fpga

-one_level

Design �9 shifter_ent

Version" 1998.02-1

Date �9 Sun Apr ii 00"05"50 1999

Xilinx FPGA Design Statistics

FG Function Generators"

H Function Generators,

Number of CLB cells:

Number of Hard Macros and

Other Cells:

Number of CLB in

Other Cel is :

Total Number of CLB :

ii

Number of Ports.

Number of Clock Pads"

Number of IOB "

13

0

13

Number of Flip Flops. 8

Number of 3-State Buffers" 0

Total Number of Cells. 19

The command replace_fpga can be used to convert the synthesized database

from CLB and IOB into combinational logic form.

dc_she11> replace_fpga

2 6 2 CHAPTER 12 FPGA SYNTHESIS

Loading design 'shifter_ent '

Replacing Programmable Cells by Gates

Finished

Transferring Design 'shifter_ent' to database
' shifter_ent, db '

Current design is 'shifter_ent '.

When the designer is satisfied with the synthesized result, the database is saved.

dc_shell> write -format db-hierarchy-output

Writing to file shifter_ent_fpga.db

SYNTHESIS LINKS TO

13
LAYOUT

13. I F O R W A R D - A N N O T A T I O N

A design that is synthesized and optimized must be forward-annotated to a layout
tool for placement and routing. The passing of a set of information from the synthesis
tool to the layout tool is termed forward-annotation.

The most important information that forward-annotation must consist of is the
synthesized database (netlist), and critical paths timing information. The timing
information is used as the driving mechanism by the layout tool for placing and rout-
ing of the synthesized design. For example, gates of critical paths are placed and
routed close to each other. Then the layout tool will try to make the best possible
placement and routing that can achieve the most optimized layout database based on
the timing information it obtained from synthesis.

From Fig. 97, a common format used for netlist database is the electronic data
interchange format (EDIF). For timing information, the standard delay format (SDF)
is generally used. There are other formats that can be used to forward-annotate the
information from synthesis to layout. However, EDIF and SDF are the ones most
commonly used.

Using the synthesized database of Appendix D (synthesis results of the pipeline
microcontroller example of Chapter 6), an EDIF and an SDF file are generated.

dc_she11> read -format db microc_ent . db
dc_she11> current_design = microc_ent

dc_shell> write-format edif -hierarchy-output
microc_ent . edi f
dc_shell> write_timing-format sdf -output
mi croc. sdf

263

264 CHAPTER 13 SYNTHESIS LINKSTO LAYOUT

Design Compiler

FIGURE 97

"-I Synthesized netlist

Timing information

Layout

Diagram Showing Forward-Annotation of Information from Synthesis to Layout

Appendix E shows a sample of the EDIF file while Appendix F shows a sample of the
SDF file that is obtained from the synthesized design of the microcontroller example
of Chapter 6.

13.2 W I R E L O A D M O D E L S

Forward-Annotation involves path timing information and the netlist database of a
design. Because the timing information is used as a driving mechanism to constrain
the layout tool, the question arises as to the accuracy of the timing information from
synthesis.

You probably would have noticed from all the earlier synthesis examples that the
use of wireload models has been at a minimum. However, wireload models are espe-
cially important if the design being synthesized is to converge with layout.

Wireload models are statistical models that are used by Design Compiler to esti-
mate wiring loading between cells in a design. Design Compiler uses the information
in a wireload model to calculate the estimated pin-to-pin delays between cells.
Therefore, if the wireload model being used by Design Compiler is not an accurate
representation of RC information in layout, the synthesized result might not be able
to meet design requirements in layout although they do meet those requirements in
synthesis.

In all of the earlier examples, only three types of wireload models have been used:
'05x05'; 'lOxlO'; and '20x20'. Example 66 shows these wireload models. They are
statistical wireload models that are part of the synthesis technology library of
' class, db '.

13.2 WIRELOAD MODELS 265

EXAMPLE 66 Examples of Wireload Models

wire_load ("05x05") {

resistance : 0 ;

capacitance : 1 ;

area : 0 ;

slope : 0. 186 ;

fanout_length (i, 0.39) ;

}

wire_l oad (" l Oxl O ") {

resistance : 0 ;

capacitance : 1 ;

area : 0 ;

slope : 0.311 ;

fanout_length (i, O. 53) ;

}

wire_load("2Ox20") {

resistance : 0 ;

capacitance : 1 ;

area : 0 ;

slope : 0.54 7 ;

fanout_length (i, 0.86) ;

}

By using an estimated wireload model, the synthesized netlist of a design together
with SDF information on critical paths are used as input to constrain the layout tool
for placement and routing of the design cells. When layout is completed, accurate
physical RC information can be extracted from the layout tool. This information is
then used to build more accurate wireload models. The updated models are back-
annotated into Design Compiler to enable Design Compiler to reoptimize the design
based on more accurate timing information. Paths that are now not meeting timing
specifications are reoptimized.

Figure 98 shows how RC data can be extracted from layout to build more accurate
wireload models to be back-annotated into synthesis for reoptimization.

The flow shown in Fig. 98 is iterated in a loop until the synthesized results con-
verge with layout. When convergence occurs, the layout database and the synthesis
database both are able to meet the necessary specifications of the design.

Referring back to Fig. 98, if initially the wireload model estimation is not accurate
or too optimistic, the designer might find him or herself having problems trying to get
the flow to converge. Therefore, it is important for the designer to be able to make
more accurate wireload estimations during the early phases of synthesis. To do this,
floorplanning tools can be used.

266 CHAPTER 13 SYNTHESIS LINKSTO LAYOUT

Design Compiler

Synthesized netlist

Timing information

layout

FIGURE 98

Back-annotate
for reoptimization

Build
wireload model

RC extraction

Diagram Showing Back-Annotation of RC Information

13.3 F L O O R P L A N N I N G A DESIGN

Floorplanning is the concept whereby certain cells and blocks are grouped together
into different regions on a chip. As a result, information on the interconnects between
different cells can be estimated more accurately. It is important for the designer to
understand that floorplanning can very well affect both synthesis and layout. If the
floorplan of a design is made overly pessimistic, the layout tool may later be over
constrained and therefore unable to meet the required specification. If the floorplan is
made overly optimistic, inaccurate information is obtained.

Floorplanning can be used before or after a design is synthesized. It can be used to
partition a design into different blocks and placed on different portions of a chip
before the design is synthesized. This method is commonly used when dealing with
complex designs that are large. In such huge designs, interconnects between different
functional blocks on the fullchip top level are difficult to estimate. Therefore, by
using this method whereby functional blocks are placed on different portions of a
chip, early back-annotation information can be obtained on the interconnects
between these top-level functional blocks.

13.4 POST LAYOUT OPTIMIZATION 2 6 7

13.4 POST LAYOUT OPTIMIZATION

When a design that have completed layout and the data back annotated into Design
Compiler, some new timing violations that did not occur before might now occur.
The designer is encouraged to make as little changes as possible to the layout data-
base while fixing these violations. This would help in not requiting for a re-layout of
the design if too many changes are made on the database.

A command that are often used for these post layout optimizations is the
in_place optimization option during compile.

dc_shell> compile-in_place

However inplace optimization is limited on the violations that it can fix. During
in_p2ace optimization, the net structure of the design is not changed. Only viola-
tions that does not require net structure changes are fixed.

14
DESIGN GUIDELINE TO F O L L O W

FOR EFFICIENT SYNTHESIS

A designer is always encouraged to follow certain design guidelines to achieve effi-
cient synthesizable design. The following guidelines are among the few that are nor-
mally encountered and used by many designers.

�9 Naming convention
Creating and using a good naming convention on a design is often overlooked in
most designs. Having a good naming convention means a neat and systematic
design, as well as ease of readability by other designers. By having a good nam-
ing convention, it is also easy for a designer to associate the function of a signal
merely by looking at the name of that signal. For example, a designer may wish
to use the capital letter 'B' at the end of every signal that is active low.
�9 Usage of Std_logic type
It is advisable for a designer to use s t d _ l o g i c type (or s t d _ l ogi c _ v e c t o r
for a bus) when designing for synthesis in VHDL. By using only one type, the
designer need not be concerned with conversion functions when integrating dif-
ferent modules together.
�9 Usage o f Loopback Signal
For designers who wish to use output ports that are looped back internally into the
design, they are encouraged to define the output port as OUTPUT and create an
additional signal that is associated with the output port and looped back internally
into the design. Designers are not encouraged to declare the output port as
BUFFER and loop it internally. Usage of the BUFFER declaration will cause
problems when different modules are integrated together as all ports linked to the
said port delcared as BUFFER must also be delcared as BUFFER type.
�9 Complete Sensitivity List
If a designer uses a sequential PROCESS and does not have the full set of signals
in the sensitivity list, simulation results for pre-synthesis and post-synthesis

269

270 CHAPTER 14 DESIGN GUIDELINETO FOLLOW FOR EFFICIENT SYNTHESIS

might be different. When a VHDL file with incomplete sensitivity list is read into
Design Compiler (dc_shell> read -format vhdl exampl e. vhd), Design
Compiler will issue a warning message that the file being read in does not have a
complete sensitivity list.
�9 Use Separate PROCESS for Combinational Logic and Sequential Logic
It is always encouraged for a designer to always separate combinational logic
and sequential logic. Have a PROCESS for combinational logic and a separate
PROCESS for sequential logic. By so doing, the designer have more flexibility if
the designer wishes to create another level of hierarchy by using the group com-
mand to create hierarchy for combinational logic and sequential logic. By using
separate PROCESS, the VHDL code also becomes much more readable.
�9 IF statements and CASE statements
I F statements will synthesize to priority encoders, while CASE statements syn-
thesize to multiplexers. However, when using any of these statements, it is
strongly advisable for the designer to list the full set of conditions and not leave
out any unspecified conditions. This would ensure that unwanted latches are not
inferred during synthesis.
�9 Signal and Variable Usage
When using signals and variables, always remember that signal assignment only
occurs on the next simulation tick while variable assignment occurs immedi-
ately.
�9 Do Not Use Hierarchies in Combinational Logic
It is a poor partitioning practice to create hierarchies in combinational logic. By
so doing, optimization is not complete as logic sharing is not allowed across
hierarchical boundaries.
�9 All Outputs to Be Driven by Registers
This is the ideal situation whereby all output ports in a design are registered
(-driven by flip-flops). This will ensure that no output constrain requirements are
needed as the paths start from a register.
�9 Remove any Glue Logic Between Blocks
If a design has glue logic between different blocks, it is encouraged to move the
glue logic into the blocks. Design Compiler upon synthesis optimization must
maintain the port definitions on a block, otherwise it is unable to optimize the
glue logic with other combinational logic in the blocks. It is more efficient to not
have any glue logic between blocks.
�9 Usage of FSM Compiler
In order for a designer to use FSM Compiler to optimize a state machine design,
it is a good partitioning practice to always separate random logic and state
machine into different blocks. As a result, the designer can use FSM Compiler to
optimize the state machine block and Design Compiler to optimize the random
logic block.

A P P E N D I X A
(STD_LOGIC_II64 LIBRARY)

-- Title : std_logic_l164 multi-value logic system

-- Library : This package shall be compiled into a library

-- : symbolically named IEEE.

- - - -

-- Developers: IEEE model standards group (par 1164)

-- Purpose : This packages defines a standard for designers

-- : to use in describing the interconnection data types

-- : used in vhdl modeling.

- - - -

-- Limitation: The logic system defined in this package may

-- : be insufficient for modeling switched transistors,

-- : since such a requirement is out of the scope of this

-- : effort. Furthermore, mathematics, primitives,

-- : timing standards, etc. are considered orthogonal

-- : issues as it relates to this package and are therefore

-- : beyond the scope of this effort.

- - - -

-- Note : No declarations or definitions shall be included in,

-- : or excluded from this package. The "package declaration"

-- : defines the types, subtypes and declarations of

-- : std_logic_l164. The std_logic_l164 package body shall be

-- : considered the formal definition of the semantics of

-- : this package. Tool developers may choose to implement

-- : the package body in the most efficient manner available

-- : to them.

- - - -

271

2 7 2 APPENDIXA

-- modification history :

-- version I mod. date: I

-- v4-200 I 01/02/92 I

-- v4.200 I 02/26/92 I Added Synopsys Synthesis Comments

-- v4.200 I 06/01/92 I Modified the "xnor"s to be xnor functions.

-- I I (see Note bellow)

-- Note: Before the VHDL'92 language being officially adopted as

-- containing the "xnor" functions, Synopsys will support

-- the xnor functions (non-overloaded).

GongWen Huang Synopsys, Inc.

library SYNOPSYS;

use SYNOPSYS.ATTRIBUTES.ALL;

PACKAGE std_logic_l164 IS

-- logic state system (unresolved)

TYPE std~logic IS (U ,

X,

0,

i,

Z,

W,

-- Uninitialized

-- Forcing Unknown

-- Forcing 0

-- Forcing 1

-- High Impedance

-- Weak Unknown

L , -- Weak

H , -- Weak

- -- Don't care

attribute ENUM_ENCODING of std_ulogic : type is "U D 0 1 Z D 0 1 D";

-- unconstrained array of std_ulogic for use with the resolution function

TYPE std_ulogic_vector IS ARRAY (NATURAL RANGE <>) OF std_ulogic;

(std_logic_l 164 LIBRARY) 2 7~

-- resolution function

FUNCTION resolved (s : std ulogic_vector) RETURN std_ulogic;

--synopsys translate_off

attribute REFLEXIVE of resolved: function is TRUE;

attribute RESULT_INITIAL_VALUE of resolved: function is std_ulogic'POS('Z');

--synopsys translate_on

-- *** industry standard logic type ***

SUBTYPE std_logic IS resolved std_ulogic;

-- unconstrained array of std_logic for use in declaring signal arrays

TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) OF std_logic;

-- common subtypes

SUBTYPE X01 IS resolved std_ulogic RANGE 'X' TO 'i'; -- ('X','0','I')

SUBTYPE X01Z IS resolved std_ulogic RANGE 'X' TO 'Z'; -- ('X','0','I','Z')

SUBTYPE UX01 IS resolved std_ulogic RANGE 'U' TO 'i'; -- ('U','X','0','I')

SUBTYPE UX01Z IS resolved std_ulogic RANGE 'U' TO 'Z'; -- ('U','X','0','I','Z')

-- overloaded logical operators

FUNCTION "and" (1 : std_uloglc; r : std_ulogic) RETURN UX01;

FUNCTION "nand" (1 : std_uloglc; r : std_ulogic) RETURN UX01;

FUNCTION "or" (1 : std_uloglc; r : std_ulogic) RETURN UX01;

FUNCTION "nor" (1 : std_uloglc; r : std_ulogic) RETURN UX01;

FUNCTION "xor" (1 : std_uloglc; r : std_ulogic) RETURN UX01;

-- function "xnor" (1 : std_uloglc; r : std_ulogic) return ux01;

function xnor (1 : std_uloglc; r : std ulogic) return ux01;

FUNCTION "not" (1 : std_uloglc) RETURN UX01;

-- vectorized overloaded logical operators

FUNCTION "and" (i, r : std_logic_vector) RETURN std_logic_vector;

FUNCTION "and" (i, r : std_ulogic_vector) RETURN std_ulogic_vector;

2 7 4 APPENDIXA

FUNCTION "nand" (i, r : std_logic_vector) RETURN std_logic_vector;

FUNCTION "nand" (i, r : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION "or" (i, r : std_logic_vector) RETURN std_logic_vector;

FUNCTION "or" (i, r : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION "nor" (i, r : std_logic_vector) RETURN std_logic_vector;

FUNCTION "nor" (i, r : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION "xor" (i, r : std_logic_vector) RETURN std_logic_vector;

FUNCTION "xor" (i, r : std_ulogic_vector) RETURN std_ulogic_vector;

-- Note : The declaration and implementation of the "xnor" function is

-- specifically commented until at which time the VHDL language has been

-- officially adopted as containing such a function. At such a point,

-- the following comments may be removed along with this notice without

-- further "official" balloting of this std_logic_l164 package. It is

-- the intent of this effort to provide such a function once it becomes

-- available in the VHDL standard.

_ _

-- function "xnor" (i, r : std_logic_vector) return std_logic_vector;

-- function "xnor" (i, r : std_ulogic_vector) return std_ulogic_vector;

function xnor (i, r : std_logic_vector) return std_logic_vector;

function xnor (i, r : std_ulogic_vector) return std_ulogic_vector;

FUNCTION "not" (1 : std_logic_vector) RETURN std_logic_vector;

FUNCTION "not" (1 : std_ulogic_vector) RETURN std_ulogic_vector;

-- conversion functions

FUNCTION To_bit (s : std_ulogic

--synopsys synthesis_off

; xmap : BIT := '0'

--synopsys synthesis_on

) RETURN BIT;

FUNCTION To_bitvector (s : std_logic_vector

--synopsys synthesis_off

; xmap : BIT := '0'

--synopsys synthesis_on

) RETURN BIT_VECTOR;

FUNCTION To_bitvector (s : std_ulogic_vector

(std_logic_ II 64 LIBRARY) ~ ' I

--synopsys synthesis_off

; xmap - BIT := '0'

--synopsys synthesis_on

) RETURN BIT_VECTOR;

FUNCTION To_StdULogic (b - BIT) RETURN std_ulogic;

FUNCTION To_StdLogicVector (b �9 BIT_VECTOR) RETURN std_logic_vector;

FUNCTION To_StdLogicVector (s : std_ulogic_vector) RETURN std_logic_vector;

FUNCTION To_StdULogicVector (b : BIT_VECTOR) RETURN std_ulogic_vector;

FUNCTION To_StdULogicVector (s : std_logic_vector) RETURN std_ulogic_vector;

strength strippers and type convertors

FUNCTION To_X01 (s : std_logic_vector) RETURN std_logic_vector;

FUNCTION To_X01 (s : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION To_X01 (s : std_ulogic) RETURN X01;

FUNCTION To_X01 (b : BIT_VECTOR) RETURN std_logic_vector;

FUNCTION To_X01 (b : BIT_VECTOR) RETURN std_ulogic_vector;

FUNCTION To_X01 (b : BIT) RETURN X01;

FUNCTION To_X01Z (s : std_logic_vector) RETURN std_logic_vector;

FUNCTION To_X01Z (s : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION To_X01Z (s : std_ulogic) RETURN X01Z;

FUNCTION To_X01Z (b : BIT_VECTOR) RETURN std_logic_vector;

FUNCTION To_X01Z (b : BIT_VECTOR) RETURN std_ulogic_vector;

FUNCTION To_X01Z (b : BIT) RETURN X01Z;

FUNCTION To_UX01 (s : std_logic_vector) RETURN std_logic_vector;

FUNCTION To_UX01 (s : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION To_UX01 (s : std_ulogic) RETURN UX01;

FUNCTION To_UX01 (b : BIT_VECTOR) RETURN std_logic_vector;

FUNCTION To_UX01 (b : BIT_VECTOR) RETURN std_ulogic_vector;

FUNCTION To_UX01 (b : BIT) RETURN UX01;

-- edge detection

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;

FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;

-- object contains an unknown

--synopsys synthesis_off

7.76 APPENDIXA

FUNCTION Is_X (s : std_ulogic_vector) RETURN BOOLEAN;

FUNCTION Is_X (s : std_logic_vector) RETURN BOOLEAN;

FUNCTION Is_X (s : std_ulogic) RETURN BOOLEAN;

--synopsys synthesis_on

END std_logic_l164;

-- Title : std_logic_l164 multi-value logic system

-- Library : This package shall be compiled into a library

-- : symbolically named IEEE.

- - - -

-- Developers: IEEE model standards group (par 1164)

-- Purpose : This packages defines a standard for designers

-- : to use in describing the interconnection data types

-- : used in vhdl modeling.

- - - -

-- Limitation: The logic system defined in this package may

-- : be insufficient for modeling switched transistors,

-- : since such a requirement is out of the scope of this

-- : effort. Furthermore, mathematics, primitives,

-- : timing standards, etc. are considered orthogonal

-- : issues as it relates to this package and are therefore

-- : beyond the scope of this effort.

- - - -

-- Note : No declarations or definitions shall be included in,

-- : or excluded from this package. The "package declaration"

-- : defines the types, subtypes and declarations of

-- : std_logic_l164. The std_logic_l164 package body shall be

-- : considered the formal definition of the semantics of

-- : this package. Tool developers may choose to implement

-- : the package body in the most efficient manner available

-- : to them.

-- modification history :

-- version I mod. date: I

-- v4.200 1 01/02/91 I

-- v4.200 1 02/26/92 I Added Synopsys Synthesis Comments

PACKAGE BODY std_logic_l164 IS

(std_logic_ I 164 LIBRARY) ~- ~7

-- local types

--synopsys synthesis_off

TYPE stdlogic_Id IS ARRAY (std_ulogic) OF std_ulogic;

TYPE stdlogic_table IS ARRAY(std_ulogic, std_ulogic) OF std_ulogic;

-- resolution function

CONSTANT resolution_table : stdlogic_table := (

_ _

[U X 0 1 Z W L H - I I

(U , U , U , U , U , U , U , U , U), --

(U , X , X , X , X , X , X , X , X), --

(U , X , 0 , X , 0 , 0 , 0 , 0 , X), --

(U , X , X , 1 , 1 , 1 , 1 , 1 , X), --

(U , X , 0 , 1 , Z , W , L , H , X), --

(U , X , 0 , 1 , W , W , W , W , X), --

(U , X , 0 , 1 , L , W , L , W , X), --

(U , X , 0 , 1 , H , W , W , H , X), --

(U , X , X , X , X , X , X , X , X) --

);

--synopsys synthesis_on

FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic IS

-- pragma resolution_method three_state

-- pragma subpgm_id 183

--synopsys synthesis_off

VARIABLE result : std_ulogic := 'Z'; -- weakest state default

--synopsys synthesis_on

BEGIN

-- the test for a single driver is essential otherwise the

-- loop would return 'X' for a single driver of '-' and that

-- would conflict with the value of a single driver unresolved

-- signal.

--synopsys synthesis_off

IF (s'LENGTH = i) THEN RETURN s(s'LOW);

ELSE

FOR i IN s'RANGE LOOP

result := resolution_table(result, s(i));

END LOOP;

END IF;

RETURN result;

--synopsys synthesis_on

END resolved;

278 APPENDIXA

-- tables for logical operations

--synopsys synthesis_off

-- truth table for "and" function

CONSTANT and_table : stdlogic_table := (

_ _

[U X 0 1 Z W L H - I I

);

(u , u , 0 , u , u , u , 0 , u , u), --

(u , x , 0 , x , x , x , 0 , x , x), --

(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0), --

(u , x , 0 , 1 , x , x , 0 , 1 , x), --

(u , x , 0 , x , x , x , 0 , x , x), --

(u , x , 0 , x , x , x , 0 , x , x), --

(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0), --

(u , x , 0 , 1 , x , x , 0 , i , x), --

(u , x , 0 , x , x , x , 0 , x , x) --

-- truth table for "or" function

CONSTANT or_table : stdlogic_table := (

_ _

[U X 0 1 Z W L H - I I

);

(u , u , u , I , u , u , u , 1 , u), --

(u , x , x , 1 , x , x , x , 1 , x), --

(u , x , 0 , 1 , x , x , 0 , i , x), --

(1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1), --

(U , X , X , 1 , X , X , X , 1 , X), --

(U , X , X , 1 , X , X , X , 1 , X), --

(U , X , 0 , 1 , X , X , 0 , 1 , X), --

(1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1), --

(U , X , X , 1 , X , X , X , 1 , X) --

-- truth table for "xor" function

CONSTANT xor_table : stdlogic_table := (

_ _

[U X 0 1 Z W L H - I I

('u', 'u', 'u', 'u', 'u'. 'u'. 'u', 'u'. 'u' I, -- I u I
('u', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x'), -- I x I

(' u ' , , x ' , ' o ' , ' l ' , , x ' , ' x , , ' o ' , ' : ' , , x ,) , - - [o [

(std_logic_ I 164 LIBRARY) ~- 7 9

);

(u , x , 1 , 0 , x , x , 1 , 0 , x), --

(u , x , x , x , x , x , x , x , x), --

(u , x , x , x , x , x , x , x , x), --

(u , x , 0 , 1 , x , x , 0 , 1 , x), --

(u , x , 1 , 0 , x , x , 1 , 0 , x), --

(u , x , x , x , x , x , x , x , x) --

-- truth table for "not" function

CONSTANT not_table: stdlogic_id :=

_ _

- - I u x 0 i z w T, H - I
_ _

('U', 'X', 'i', '0', 'X', 'X', 'i', '0', 'X');

--synopsys synthesis_on

-- overloaded logical operators (with optimizing hints)

FUNCTION "and" (1 : std_ulogic; r : std_ulogic) RETURN UX01 IS

-- pragma built_in SYN_AND

-- pragma subpgm_id 184

BEGIN

-- synopsys synthesis_off

RETURN (and_table(l, r)) ;

-- synopsys synthesis_on

END "and";

FUNCTION "nand" (1 : std_ulogic; r : std_ulogic) RETURN UX01 IS

-- pragma built_in SYN_NAND

-- pragma subpgm_id 185

BEGIN

-- synopsys synthesis_off

RETURN (not_table (and_table (i, r))) ;

-- synopsys synthesis_on

END "nand" ;

FUNCTION "or" (1 : std_ulogic; r : std_ulogic) RETURN UX01 IS

-- pragma built_in SYN_OR

-- pragma subpgm_id 186

BEGIN

--synopsys synthesis_off

RETURN (or_table(l, r)) ;

-- synopsys synthesis_on

END "or";

~Sg APPENDIXA

FUNCTION "nor" (1 : std_ulogic; r : std_ulogic) RETURN UX01 IS

-- pragma built_in SYN_NOR

-- pragma subpgm_id 187

BEGIN

--synopsys synthesis_off

RETURN (not table (or_table(i, r))) ;

--synopsys synthesis_on

END "nor" ;

FUNCTION "xor" (1 : std_ulogic; r : std_ulogic) RETURN UX01 IS

-- pragma built_in SYN_XOR

-- pragma subpgm_id 188

BEGIN

--synopsys synthesis_off

RETURN (xor_table (i, r)) ;

--synopsys synthesis_on

END "xor" ;

-- function "xnor" (1 : std_ulogic; r : std_ulogic) return ux01 is

.... pragma bui i t_in SYN_XNOR

.... pragma subpgm_id 189

-- begin

.... synopsys synthesis_off

-- return not_table(xor_table(l, r)) ;

.... synopsys synthesis_on

- - end "xnor" ;

function xnor (1 : std_ulogic; r : std_ulogic) return ux01 is

-- pragma buil t_in SYN_XNOR

-- pragma subpgm_id 189

begin

--synopsys synthesis_off

return not_table (xor_table (i, r)) ;

--synopsys synthesis_on

end xnor ;

FUNCTION "not" (1 : std_ulogic) RETURN UX01 IS

-- pragma bui i t_in SYN_NOT

-- pragma subpgm_id 190

BEGIN

--synopsys synthesis_off

RETURN (not_table (i)) ;

--synopsys synthesis_on

END "not";

(std_logic_l 164 LIBRARY) ~-~ I

-- and

FUNCTION "and" (l,r : std_logic_vector) RETURN std logic_vector IS

-- pragma built_in SYN_AND

-- pragma subpgm_id 198

--synopsys synthesis_off

ALIAS iv : std_logic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_logic_vector (1 TO 1'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

REPORT "arguments of overloaded 'and' operator are not of the same length"

SEVERITY FAILURE;

ELSE

FOR i IN result'RANGE LOOP

result(i) := and_table (iv(i), rv(i));

END LOOP;

END IF;

RETURN result;

--synopsys synthesis_on

END "and";

FUNCTION "and" (l,r : std_ulogic_vector) RETURN std_ulogic_vector IS

-- pragma built_in SYN_AND

-- pragma subpgm_id 191

--synopsys synthesis_off

ALIAS iv : std_ulogic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_ulogic_vector (1 TO 1'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

REPORT "arguments of overloaded 'and' operator are not of the same length"

SEVERITY FAILURE;

ELSE

FOR i IN result'RANGE LOOP

result(i) := and_table (iv(i), rv(i));

END LOOP;

END IF;

RETURN result;

282 APPENDIXA

--synopsys synthesis_on

END "and";

-- nand

FUNCTION "nand" (l,r : std_logic_vector) RETURN std_logic_vector IS

-- pragma built_in SYN_NAND

-- pragma subpgm_id 199

--synopsys synthesis_off

ALIAS iv : std_logic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_logic_vector (1 TO 1'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

REPORT "arguments of overloaded 'nand' operator are not of the same length"

SEVERITY FAILURE;

ELSE

FOR i IN result'RANGE LOOP

result(i) := not_table(and_table (iv(i), rv(i)));

END LOOP;

END IF;

RETURN result;

--synopsys synthesis_on

END "nand";

FUNCTION "nand" (l,r : std_ulogic_vector) RETURN std_ulogic_vector IS

-- pragma built_in SYN_NAND

-- pragma subpgm_id 192

--synopsys synthesis_off

ALIAS iv : std_ulogic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_ulogic_vector (1 TO 1'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

REPORT "arguments of overloaded 'nand' operator are not of the same length"

SEVERITY FAILURE;

ELSE

FOR i IN result'RANGE LOOP

result(i) := not_table(and_table (iv(i), rv(i)));

END LOOP;

(std_logic_l 164 LIBRARY) 2 ~

END IF;

RETURN result;

--synopsys synthesis_on

END "nand";

-- or

FUNCTION "or" (l,r : std_logic_vector) RETURN std_logic_vector IS

-- pragma built_in SYN_OR

-- pragma subpgm_id 200

--synopsys synthesis_off

ALIAS iv : std_logic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_logic_vector (1 TO 1'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

REPORT "arguments of overloaded 'or' operator are not of the same length"

SEVERITY FAILURE;

ELSE

FOR i IN result'RANGE LOOP

result(i) := or_table (iv(i), rv(i));

END LOOP;

END IF;

RETURN result;

--synopsys synthesis_on

END "or";

FUNCTION "or" (l,r : std_ulogic_vector) RETURN std_ulogic_vector IS

-- pragma built_in SYN_OR

pragma subpgm_id 193

--synopsys synthesis_off

ALIAS iv : std_ulogic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_ulogic_vector (1 TO 1'LENGTH);

--synopsys synthesis on

BEGIN

--synopsys synthesis off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

REPORT "arguments of overloaded 'or' operator are not of the same length"

SEVERITY FAILURE;

ELSE

FOR i IN result'RANGE LOOP

2 8 4 APPENDIXA

result(i) := or_table (iv(i), rv(i));

END LOOP;

END IF;

RETURN result;

--synopsys synthesis_on

END "or";

-- nor

FUNCTION "nor" (l,r : std_logic_vector) RETURN std_logic_vector IS

-- pragma built_in SYN_NOR

-- pragma subpgm_id 201

--synopsys synthesis_off

ALIAS iv : std_logic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_logic_vector (1 TO 1'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

REPORT "arguments of overloaded 'nor' operator are not of the same length"

SEVERITY FAILURE;

ELSE

FOR i IN result'RANGE LOOP

result(i) := not_table(or_table (iv(i), rv(i)));

END LOOP;

END IF;

RETURN result;

--synopsys synthesis_on

END "nor";

FUNCTION "nor" (l,r : std_ulogic_vector) RETURN std_ulogic_vector IS

-- pragma built_in SYN_NOR

-- pragma subpgm_id 194

--synopsys synthesis_off

ALIAS iv : std_ulogic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_ulogic_vector (1 TO 1'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

REPORT "arguments of overloaded 'nor' operator are not of the same length"

SEVERITY FAILURE;

(std_logic_l 164 LIBRARY) 2 8 5

ELSE

FOR i IN result'RANGE LOOP

result(i) := not_table(or table (iv(i), rv(i)));

END LOOP;

END IF;

RETURN result;

--synopsys synthesis_on

END "nor";

-- x o r

FUNCTION "xor" (l,r : std_logic_vector) RETURN std_logic_vector IS

-- pragma built_in SYN_XOR

-- pragma subpgm_id 202

--synopsys synthesis_off

ALIAS iv : std_logic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_logic_vector (1 TO 1'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

REPORT "arguments of overloaded 'xor' operator are not of the same length"

SEVERITY FAILURE;

ELSE

FOR i IN result'RANGE LOOP

result(i) := xor_table (iv(i), rv(i));

END LOOP;

END IF;

RETURN result;

--synopsys synthesis_on

END "xor";

FUNCTION "xor" (l,r : std_ulogic_vector) RETURN std_ulogic vector IS

-- pragma built_in SYN_XOR

-- pragma subpgm_id 195

--synopsys synthesis_off

ALIAS iv : std_ulogic_vector (1 TO 1'LENGTH) IS i;

ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_ulogic_vector (1 TO 1'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

IF (1'LENGTH /= r'LENGTH) THEN

ASSERT FALSE

2 8 6 APPENDIXA

REPORT "arguments of overloaded 'xor' operator are not of the same length"

SEVERITY FAILURE;

ELSE

FOR i IN result'RANGE LOOP

result(i) := xor_table (Iv(i), rv(i));

END LOOP;

END IF;

RETURN result;

--synopsys synthesis_on

END "xor";

.... xnor

_ _

-- Note : The declaration and implementation of the "xnor" function is

-- specifically commented until at which time the VHDL language has been

-- officially adopted as containing such a function. At such a point,

-- the following comments may be removed along with this notice without

-- further "official" ballotting of this std_logic_l164 package. It is

-- the intent of this effort to provide such a function once it becomes

-- available in the VHDL standard.

_ _

-- function "xnor" (l,r : std_logic_vector) return std_logic_vector is

. . . . pragma built_in SYN_XNOR

. . . . pragma subpgm_id 203

. . . . synopsys synthesis_off

-- alias iv : std_logic_vector (1 to l'length) is i;

-- alias rv : std_logic_vector (1 to r'length) is r;

-- variable result : std_logic_vector (1 to l'length);

. . . . synopsys synthesis_on

-- begin

. . . . synopsys synthesis_off

-- if (l'length /= r'length) then

-- assert false

-- report "arguments of overloaded 'xnor' operator are not of the same length"

-- severity failure;

-- else

-- for i in result'range loop

-- result(i) := not_table(xor_table (iv(i), rv(i)));

-- end loop;

-- end if;

-- return result;

. . . . synopsys synthesis_on

-- end "xnor";

_ _

-- function "xnor" (l,r : std_ulogic_vector) return std_ulogic_vector is

(std_logic_1164 LIBRARY) 2 8 7

. . . . pragma built_in SYN_XNOR

. . . . pragma subpgm_id 196

. . . . synopsys synthesis_off

-- alias iv : std_ulogic_vector (1 to l'length) is i;

-- alias rv : std_ulogic_vector (1 to r'length) is r;

-- variable result : std_ulogic_vector (1 to l'length);

. . . . synopsys synthesis_on

-- begin

. . . . synopsys synthesis_off

-- if (l'length /= r'length) then

-- assert false

-- report "arguments of overloaded 'xnor' operator are not of the same length"

-- severity failure;

-- else

-- for i in result'range loop

-- result(i) := not_table(xor_table (iv(i), rv(i)));

-- end loop;

-- end if;

-- return result;

. . . . synopsys synthesis_on

- - end "xnor" ;

function xnor (l,r : std_logic_vector) return std_logic_vector is

-- pragma built_in SYN_XNOR

-- pragma subpgm_id 203

--synopsys synthesis_off

alias iv : std_logic_vector (1 to l'length) is i;

alias rv : std_logic_vector (1 to r'length) is r;

variable result : std_logic_vector (1 to l'length);

--synopsys synthesis_on

begin

--synopsys synthesis_off

if (l'length /= r'length) then

assert false

report "arguments of overloaded 'xnor' operator are not of the same length"

severity failure;

else

for i in result'range loop

result(i) := not_table(xor_table (iv(i), rv(i)));

end loop;

end if;

return result;

--synopsys synthesis_on

end xnor;

function xnor (l,r : std_ulogic_vector) return std_ulogic_vector is

2 8 8 APPENDIXA

-- pragma built_in SYN_XNOR

-- pragma subpgm_id 196

--synopsys synthesis_off

alias iv : std_ulogic_vector (1 to l'length) is i;

alias rv : std_ulogic_vector (1 to r'length) is r;

variable result : std_ulogic_vector (1 to l'length);

--synopsys synthesis_on

begin

--synopsys synthesis_off

if (l'length /= r'length) then

assert false

report "arguments of overloaded 'xnor' operator are not of the same length"

severity failure;

else

for i in result'range loop

result(i) := not_table(xor_table (iv(i), rv(i)));

end loop;

end if;

return result;

--synopsys synthesis_on

end xnor;

-- not

FUNCTION "not" (1 : std_logic_vector) RETURN std_logic_vector IS

-- pragma built_in SYN_NOT

-- pragma subpgm_id 204

--synopsys synthesis_off

ALIAS iv : std_logic_vector (1 TO 1'LENGTH) IS i;

VARIABLE result : std_logic_vector (1 TO 1'LENGTH) := (OTHERS => 'X');

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

result(i) := not_table(iv(i));

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

FUNCTION "not" (1 : std_ulogic_vector) RETURN std_ulogic_vector IS

-- pragma bui I t_in SYN_NOT

-- pragma subpgm_id 197

(std_logic_l 164 LIBRARY) ~-89

--synopsys synthesis_off

ALIAS iv : std_ulogic_vector (1 TO 1'LENGTH) IS i;

VARIABLE result : std_ulogic_vector (1 TO 1'LENGTH) := (OTHERS => 'X');

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

result(i) := not_table(iv(i));

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

-- conversion tables

--synopsys synthesis_off

TYPE logic_x01_table IS ARRAY (std_ulogic'LOW TO std_ulogic'HIGH) OF X01;

TYPE logic_x01z_table IS ARRAY (std_ulogic'LOW TO std_ulogic'HIGH) OF X01Z;

TYPE logic_ux01_table IS ARRAY (std_ulogic'LOW TO std_ulogic'HIGH) OF UX01;

-- table name : cvt_to_x01

__

-- parameters :

-- in : std_ulogic -- some logic value

-- returns : x01 -- state value of logic value

-- purpose : to convert state-strength to state only

__

-- example : if (cvt_to_x01 (input_signal) = 'i') then ...

__

CONSTANT cvt_to_x01 : logic_x01_table := (

X i

X ,

0 ,

1 ,

X ,

X ,

0 ,

1 ,

-- u

---- X

-- 0

-- Z

-- W

L

---- S

x -- -

);

-- table name : cvt_to_x01z

__

2 9 0 APPENDIXA

-- parameters :

-- in : std_ulogic -- some logic value

-- returns : x01z -- state value of logic value

-- purpose : to convert state-strength to state only

-- example : if (cvt_to_x01z (input_signal) = 'i') then ...

_--

CONSTANT cvt_to_x01z : logic_x01z_table := (

X i -- U

X , -- X

0 , -- 0

1 , -- 1

Z , -- Z

X , -- W

0 , -- L

1 , -- H

X -- -

-- table name : cvt_to_ux01

__

-- parameters :

-- in : std_ulogic -- some logic value

-- returns : ux01 -- state value of logic value

-- purpose : to convert state-strength to state only

-- example : if (cvt_to_ux01 (input_signal) = 'i') then ...

CONSTANT cvt_to_ux01 : logic_ux01_table := (

U i

X ,

0 ,

1 ,

X ,

X ,

0 ,

1 ,

-- U

---- X

---- 0

---- 1

---- Z

-- W

-- L

-- S

X - -

);

--synopsys synthesis_on

-- conversion functions

(std_logic_1164 LIBRARY) 29 1

FUNCTION To bit (s : std_ulogic

--synopsys synthesis off

; xmap : BIT :: '0'

--synopsys synthesis_on

) RETURN BIT IS

pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 205

BEGIN

--synopsys synthesis_off

CASE s IS

WHEN '0' I 'L' => RETURN ('0');

WHEN 'i' I 'H' :> RETURN ('i');

WHEN OTHERS => RETURN xmap;

END CASE;

--synopsys synthesis_on

END;

FUNCTION To_bitvector (s : std_logic_vector

--synopsys synthesis_off

; xmap : BIT :: '0'

--synopsys synthesis_on

) RETURN BIT_VECTOR IS

pragma built_in SYN_FEED_THRU

pragma subpgm_id 206

--synopsys synthesis_off

ALIAS sv : std_logic_vector (s'LENGTH-I DOWNTO 0) IS s;

VARIABLE result : BIT_VECTOR (s'LENGTH-I DOWNTO 0);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE sv(i) IS

WHEN '0' I 'L' :> result(i) := '0' ;

WHEN 'i' I 'H' :> result(i) := 'i' ;

WHEN OTHERS :> result(i) :: xmap;

END CASE;

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

FUNCTION To_bitvector (s : std_ulogic_vector

--synopsys synthesis_off

; xmap : BIT :: '0'

--synopsys synthesis_on

~-92 APPENDIXA

) RETURN BIT_VECTOR IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 207

--synopsys synthesis_off

ALIAS sv : std_ulogic_vector (s'LENGTH-I DOWNTO 0) IS s;

VARIABLE result : BIT_VECTOR (s'LENGTH-I DOWNTO 0);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE sv(i) IS

WHEN '0' I 'L' => result(i) := '0';

WHEN 'i' I 'H' => result(i) := 'i' ;

WHEN OTHERS => result(i) := xmap;

END CASE;

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

FUNCTION To_StdULogic (b : BIT

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 208

BEGIN

--synopsys synthesis_off

CASE b IS

WHEN '0' => RETURN '0';

WHEN 'i' => RETURN 'i';

END CASE;

--synopsys synthesis_on

END;

) RETURN std_ulogic IS

FUNCTION To_StdLogicVector (b : BIT_VECTOR) RETURN std_logic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 209

--synopsys synthesis_off

ALIAS bv : BIT_VECTOR (b'LENGTH-I DOWNTO 0) IS b;

VARIABLE result : std_logic_vector (b'LENGTH-I DOWNTO 0);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE bv(i) IS

WHEN '0' => result(i) := '0' ;

WHEN 'i' => result(i) := 'i' ;

END CASE;

(std_logic_ I 164 LIBRARY) 2 9 3

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

FUNCTION To_StdLogicVector (s : std_ulogic_vector) RETURN std_logic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 210

--synopsys synthesis_off

ALIAS sv : std_ulogic_vector (s'LENGTH-I DOWNTO 0) IS s;

VARIABLE result : std_logic_vector (s'LENGTH-I DOWNTO 0);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

result(i) := sv(i);

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

FUNCTION To_StdULogicVector (b : BIT_VECTOR) RETURN std_ulogic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 211

--synopsys synthesis_off

ALIAS bv : BIT_VECTOR (b'LENGTH-I DOWNTO 0) IS b;

VARIABLE result : std_ulogic_vector (b'LENGTH-I DOWNTO 0);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE by(i) IS

WHEN '0' => result(i) := '0' ;

WHEN 'i' => result(i) := 'i' ;

END CASE;

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

FUNCTION To_StdULogicVector (s : std_logic_vector) RETURN std_ulogic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 212

--synopsys synthesis_off

ALIAS sv : std_logic_vector (s'LENGTH-I DOWNTO 0) IS s;

VARIABLE result : std_ulogic_vector (s'LENGTH-I DOWNTO 0);

2.94 APPENDIXA

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

result(i) := sv(i);

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

-- strength strippers and type convertors

-- to_x01

FUNCTION To_X01 (s : std_logic_vector) RETURN std_logic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 213

--synopsys synthesis_off

ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;

VARIABLE result : std_logic_vector (1 TO s'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

result(i) := cvt_to_x01 (sv(i));

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

FUNCTION To_X01 (s : std_ulogic_vector) RETURN std_ulogic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 214

--synopsys synthesis_off

ALIAS sv : std_ulogic_vector (1 TO s'LENGTH) IS s;

VARIABLE result : std_ulogic_vector (1 TO s'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

result(i) := cvt_to_x01 (sv(i));

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

(std_logic_ I 164 LIBRARY) ~-9 5

FUNCTION To_X01 (s : std_ulogic) RETURN X01 IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 215

BEGIN

--synopsys synthesis_off

RETURN (cvt_to_x01(s));

--synopsys synthesis_on

END;

FUNCTION To_X01 (b : BIT_VECTOR) RETURN std_logic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 216

--synopsys synthesis_off

ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;

VARIABLE result : std_logic_vector (1 TO b'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE bv(i) IS

WHEN '0' => result(i) := '0';

WHEN 'i' => result(i) := 'i';

END CASE;

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

.

FUNCTION To_X01 (b : BIT_VECTOR) RETURN std_ulogic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 217

--synopsys synthesis_off

ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;

VARIABLE result : std_ulogic_vector (1 TO b'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE bv(i) IS

WHEN '0' => result(i) := '0';

WHEN 'i' => result(i) := 'i';

END CASE;

END LOOP;

RETURN result;

--synopsys synthesis_on

2 9 6 APPENDIXA

END;

FUNCTION To_X01 (b : BIT) RETURN X01 IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 218

BEGIN

--synopsys synthesis_off

CASE b IS

WHEN '0' => RETURN('0');

WHEN 'i' => RETURN('1');

END CASE;

--synopsys synthesis_on

END;

-- to_x01z

FUNCTION To_X01Z (s : std_logic_vector) RETURN std_logic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 219

--synopsys synthesis_off

ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;

VARIABLE result : std_logic_vector (1 TO s'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

result(i) := cvt_to_x01z (sv(i));

END LOOP;

RETURN result;

--synopsys synthesis_on

END;
_ _

FUNCTION To_X01Z (s : std_ulogic_vector) RETURN std_ulogic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 220

--synopsys synthesis_off

ALIAS sv : std_ulogic_vector (1 TO s'LENGTH) IS s;

VARIABLE result : std_ulogic_vector (1 TO s'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result 'RANGE LOOP

result(i) := cvt to_x01z (sv(i));

END LOOP;

RETURN result ;

-- synopsys synthesis_on

(std_logic_ II 64 LIBRARY) 2 9"I

END;

FUNCTION To_X01Z (s : std_ulogic) RETURN X01Z IS

pragma built_in SYN_FEED_THRU

pragma subpgm_id 221

BEGIN

--synopsys synthesis_off

RETURN (cvt_to_x01z(s)) ;

--synopsys synthesis_on

END;

FUNCTION To_X01Z (b - BIT_VECTOR) RETURN std_logic_vector IS

pragma built_in SYN_FEED_THRU

pragma subpgm_id 222

--synopsys synthesis_off

ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;

VARIABLE result : std_logic_vector (1 TO b'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE bv(i) IS

WHEN '0' => result(i) :: '0' ;

WHEN 'i' :> result(i) :: 'i' ;

END CASE;

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

FUNCTION To_X01Z (b : BIT_VECTOR) RETURN std_ulogic_vector IS

pragma built_in SYN_FEED_THRU

pragma subpgm_id 223

--synopsys synthesis_off

ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;

VARIABLE result : std_ulogic_vector (1 TO b'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE bv(i) IS

WHEN '0' => result(i) := '0' ;

WHEN 'i' => result(i) := 'i' ;

END CASE;

END LOOP;

RETURN result;

2 9 8 APPENDIXA

--synopsys synthesis_on

END;

FUNCTION To_X01Z (b : BIT) RETURN X01Z IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 224

BEGIN

--synopsys synthesis_off

CASE b IS

WHEN '0' => RETURN('0');

WHEN 'i' => RETURN('1');

END CASE;

--synopsys synthesis_on

END;

-- to_ux01

FUNCTION To_UX01 (s : std_logic_vector) RETURN std_logic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 225

--synopsys synthesis_off

ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;

VARIABLE result : std_logic_vector (1 TO s'LENGTH);

--synopsys synthesis_on

BEGIN

-- synopsys synthesis_off

FOR i IN result'RANGE LOOP

result(i) := cvt_to_ux01 (sv(i)) ;

END LOOP;

RETURN result ;

--synopsys synthesis_on

END;

FUNCTION To_UX01 (s : std_ulogic_vector) RETURN std_ulogic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 226

--synopsys synthesis_off

ALIAS sv : std_ulogic_vector (1 TO s'LENGTH) IS s;

VARIABLE result : std_ulogic_vector (1 TO s'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result 'RANGE LOOP

result(i) := cvt_to_ux01 (sv(i)) ;

END LOOP;

RETURN result;

(std_logic_l 164 LIBRARY) 299

--synopsys synthesis_on

END;

FUNCTION To_UX01 (s : std_ulogic) RETURN UX01 IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 227

BEGIN

--synopsys synthesis_off

RETURN (cvt_to_ux01(s));

--synopsys synthesis_on

END;

FUNCTION To_UX01 (b : BIT_VECTOR) RETURN std_logic_vector IS

-- pragma built in SYN_FEED_THRU

-- pragma subpgm_id 228

--synopsys synthesis_off

ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;

VARIABLE result : std_logic_vector (1 TO b'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE bv(i) IS

WHEN '0' => result(i) := '0' ;

WHEN 'i' => result(i) := 'i' ;

END CASE;

END LOOP;

RETURN result;

--synopsys synthesis_on

END;

FUNCTION To_UX01 (b : BIT_VECTOR) RETURN std_ulogic_vector IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 229

--synopsys synthesis_off

ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;

VARIABLE result : std_ulogic_vector (1 TO b'LENGTH);

--synopsys synthesis_on

BEGIN

--synopsys synthesis_off

FOR i IN result'RANGE LOOP

CASE bv(i) IS

WHEN '0' => result(i) := '0' ;

WHEN 'i' => result(i) := 'i';

END CASE;

END LOOP;

~(}g APPENDIXA

RETURN result;

--synopsys synthesis_on

END;

FUNCTION To_UX01 (b : BIT) RETURN UX01 IS

-- pragma built_in SYN_FEED_THRU

-- pragma subpgm_id 230

BEGIN

--synopsys synthesis_off

CASE b IS

WHEN '0' => RETURN('0');

WHEN 'i' => RETURN('1');

END CASE;

--synopsys synthesis_on

END;

-- edge detection

_ _

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN IS

-- pragma subpgm_id 231

BEGIN

--synopsys synthesis_off

RETURN (s'EVENT AND (To_X01(s) = 'i') AND

(To_X01(s'LAST_VALUE) = '0')) ;

-- synopsys synthesis_on

END;

FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN IS

-- pragma subpgm_id 232

BEGIN

--synopsys synthesis_off

RETURN (s'EVENT AND (To_X01(s) = '0') AND

(To_X01(s'LAST_VALUE) = 'i'));

--synopsys synthesis_on

END;

-- object contains an unknown

--synopsys synthesis_off

FUNCTION Is_X (s : std_ulogic_vector) RETURN BOOLEAN IS

-- pragma subpgm_id 233

BEGIN

FOR i IN s'RANGE LOOP

CASE s(i) IS

(std_logic_1164 LIBRARY) 3131

END ;

WHEN 'U' I 'X' I 'Z' I 'W' I '

WHEN OTHERS => NULL;

END CASE ;

END LOOP ;

RETURN FALSE ;

-' => RETURN TRUE;

FUNCTION Is_X (s : std_logic_vector) RETURN BOOLEAN IS

-- pragma subpgm_id 234

BEGIN

FOR i IN s'RANGE LOOP

CASE s(i) IS

WHEN 'U' I 'X' I 'Z' I 'W' I '

WHEN OTHERS => NULL;

END CASE ;

END LOOP ;

RETURN FALSE ;

END;

-' => RETURN TRUE;

FUNCTION Is_X (s : std_ulogic) RETURN BOOLEAN IS

-- pragma subpgm_id 235

BEGIN

CASE s IS

WHEN 'U' I 'X' i 'Z' l 'W' i '-' :> RETU~TRUE;

WHEN OTHERS => NULL;

END CASE;

RETURN FALSE;

END;

--synopsys synthesis_on

END std_logic_l164;

This Page Intentionally Left Blank

APPENDIX B
(SHIFTER SYNTHESIS RESULTS)

The shifter design example from Chapter 5.1 is synthesized with design constraints.

Filename: shifter.vhd

tic_shell> read-format vhdl shifter.vhd

tic_shell> current_design = shifter_ent

dc_shell> create_clock clock -name clock -period 5

tic_shell> set_input_delay 2.3 -clock clock data*

de_shell> set_input_delay 2.3 -clock clock enable

dc_shell> set_input_delay 2.3 -clock clock load
tic_shell> set_inputdelay 2.5 -clock clock mode*

Output delay is not set for this example as the output of the shifter is from a flip-flop.
Design is compiled with nmp e f f o r t m e d i u m option.

dc_shel i > compi i e -map_effort medium

tic_shell> report_timing -path full -delay max

-max_paths I -nworst i

Information" Updating design information...

Report �9 timing

-path full

-delay max

-max_paths 1

Design �9 shifter_ent

(UID-85)

303

0 4 APPENDIX B

Version. 1998.02-1

Date �9 Tue Mar 16 13.03.18 1999

Opera ting Condi t i ons .

Wire Loading Model Mode. top

Design Wire Loading Model Library

shi f ter_ent 05x05 c l ass

Startpoint. mode[l] (input port clocked by clock)
Endpoint. internal_output_reg[l]

(rising edge-triggered flip-flop clocked by
clock)

Path Group. clock

Path Type. max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay

mode [I] (in)
UI8/Z (IVI)
UI5/Z (ND2I)

UI4/Z (MUX21LP)

U34/Z (ND2I)

U21/Z (AO3P)

internal_output_reg [l] /TE (FD2S)
data arrival time

0.00 0.00

0.00 0.00
2.50 2.50 f

0.00 2.50 f
0.24 2.74 r

0.19 2.93 f

0.58 3.51 r
0.19 3.70 f

0.82 4.51 r

0.00 4.51 r

4.51

clock clock (rise edge)

clock network delay (ideal)

internal_output_reg [l] /CP (FD2S)
library setup time

data required time

5.00 5.00

0.00 5.00

0.00 5.00 r

-i. 25 3.75

3.75

data required time

data arrival time
3.75

-4.51

slack (VIOLATED) -0.76

With the violation of 0.76 ns, a map_effort high of incremental mapping is
executed.

(SHIFTER SYNTHESIS RESULTS) :3 ~

dc_shell> compile -map_effort high -
incremen t al_mapp ing
dc_shell> report_timing -path full -delay max -
max_paths i -nworst I

Information. Updating design information...

Report �9 timing

-path full

-delay max
-max_paths 1

Design �9 shifter_ent
Version" 1998.02-1

Date �9 Tue Mar 16 13.04.05 1999

Operating Conditions �9

Wire Loading Model Mode. top

(UID-85)

Design Wire Loading Model Library

shifter ent 05x05 class

Startpoint. mode[O] (input port clocked by clock)

Endpoin t �9 internal_output_reg [3]
(rising edge-triggered flip-flop clocked by

clock)

Path Group. clock

Path Type. max

Point Incr Path

clock clock (rise edge) 0.00

clock network delay (ideal) 0.00

input external delay 2.50

mode[O] (in) 0.00
U47/Z (IVI) 0.24
U49/Z (ND2I) 0.12

U48/Z (IVI) 0.29
USI/Z (MUX21LP) O. 44

U50/Z (MUX21L) 0.52

internal_output_reg[3] /TE (FD2S) 0.0 0
data arrival time

0.00

0.00

2.50 f

2.50 f

2.74 r

2.86 f

3.15 r

3.59 f

4.10 r

4.10 r

4.10

3 0 6 APPENDIX B

clock clock (rise edge)
clock network delay (ideal)

internal_output_reg [3] /CP (FD2S)
library setup time

data required time

5.00 5.00
0.00 5.00

0.00 5.00 r

-i. 25 3.75

3.75

data required time

data arrival time

slack (VIOLATED)

3.75

-4.10

-0.35

A group_path command is executed because a violation of 0.35 ns is still
observed.

dc_shel l > group__math -name cri t i cal l -from
mode [01 -to internal_output_reg [3] -weight 5
dc_shell> compile -map_effort high -
incremental_mapping
dc_shell> report_timing -path full -delay max -
max_paths 1 -nworst 1

Information: Updating design information...

Report �9 timing
-path full
-delay max
-max_paths 1

Design : shifter_ent
Version" 1998.02-1

Date : Tue Mar 16 13:06"55 1999

Operating Condi tions :

Wire Loading Model Mode: top

De s i gn Wire Loading Model

(UID-85)

Library

shi fter_ent 05x05 class

Startpoint: mode[O] (input port clocked by clock)

(SHIFTER SYNTHESIS RESULTS) ~t)7

Endpoint : internal_output_reg[3]
(rising edge-triggered flip-flop clocked by

clock)
Path Group. criticall
Path Type: max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay
mode[O] (in)
UIO5/Z (IVI)
UIO7/Z (ND2I)
UIO2/Z (ND2I)

U98/Z (IVI)
U96/Z (ND2I)
U95/Z (ND2I)
internal_output_reg [3] /TE (FD2S)
data arrival time

clock clock (rise edge)
clock network delay (ideal)
internal_output_reg [3]/CP (FD2S)
library setup time

data required time

0.00 0.00

0.00 0.00
2.50 2.50 f
0.00 2.50 f
0.24 2.74 r
0.12 2.86 f

0.25 3.11 r
0.12 3.24 f
O. 25 3.49 r
O. 19 3.68 f

0.00 3.68 f

3.68

5.00 5.00

0.00 5.00
0.00 5.00 r

-i. 25 3.75

3.75

data required time
data arrival time

3.75
-3.68

slack (MET) O. 07

Startpoint: mode[O] (input port clocked by clock)
Endpoint : internal_output_reg [l]

(rising edge-triggered flip-flop clocked by

clock)
Path Group: clock
Path Type: max

Point Incr Path

clock clock (rise edge)
clock network delay (ideal)
input external delay

0 .00 0 .00
0 .00 0 .00
2.50 2.50 f

3 0 8 APPENDIX B

mode[O] (in)
U57/Z (ENI)
U53/Z (ND2I)

U87/Z (ND2I)

U85/Z (ND2I)

U83/Z (ND2I)

internal_output_reg [l] /TE (FD2S)
data arrival time

0.00

0.42

0.25

0.12

0.25

0.19

0.00

clock clock (rise edge)

clock network delay (ideal)

internal_output_reg [l] /CP (FD2S)
library setup time

data required time

5.00

0.00

0.00

-1.25

data required time

data arrival time -3.73

2.50 f

2.92 f

3.18 r

3.30 f

3.55 r

3.73 f

3.73 f

3.73

5.00

5.00

5.00 r

3.75

3.75

3.75

slack (MET) 0.02

APPENDIX C
(COUNTER SYNTHESIS RESULTS)

The counter design example from Chapter 5.2 is synthesized with design constraints.

Filename : counter, vhd

dc_shell> read -format vhdl counter.vhd

dc_she11> create_clock -name clock clock -period 5

dc_shell> set_input_delay 2.0 data* -clock clock

dc_shell> set_input delay 2.0 enable -clock clock

dc_shell> set_inputdelay 2.0 load-clock clock

dc_shell> set_inputdelay 2.0 mode* -clock clock

Output delay is not set for this example as the output of the counter is from a flip-
flop.

dc_shell> current_design = counter_ent

dc_shell> compile -map_effort medium

dc_shell> report_timing -path full -delay max -

max_paths I -nworst I

Information" Updating design information... (UID-85)

Report �9 timing

-path full

-delay max

-max_paths 1

309

3 1 0 APPENDIX C

Design : counter_ent
Version: 1998.02-1

Date : Tue Mar 16 14.28.01 1999

Operating Condi tions "

Wire Loading Model Mode: top

Design Wire Loading Model Library

coun t er_en t 05x05 c l ass

Startpoint: mode (input port clocked by clock)

Endpoint : internal_output_reg[2]
(rising edge-triggered flip-flop clocked by

clock)

Path Group: clock
Path Type: max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

input external delay

moSe (in]
U36/Z (NR2I)
udg/z (AN2I)
U73/Z (MUX21L)
U58/Z (ND2I)
U43/Z (IVI)
U42/Z (MUX21LP)
internal_output_reg [2] /TE (FD2S)
data arrival time

clock clock (rise edge)

clock network delay (ideal)

internal_output_meg[2]/CP (FD2S)
library setup time

data required time

0.00 0.00

0.00 0.00

2.00 2.00 f

0.00 2.00 f
0.57 2.57 r

0.39 2.96 r

0.44 3.40 f

0.25 3.65 r

0.17 3.83 f

0.54 4.37 r

0.00 4.37 r

4.37

5.00 5.00

0.00 5.00

0.00 5.00 r

-i. 25 3.75

3.75

data required time

data arrival time

3.75

-4.37

slack (VIOLATED) -0.62

(COUNTER SYNTHESIS RESULTS) ~ I I

With a setup violation of 0.62 ns, a map_effort high compilation with incremen-
tal mapping is executed.

dc_shell> compile -map_effort high -
incremental_mapping
tic_shell> reporttiming -path full -delay max -
maxpaths 1 -nworst 1

Information" Updating design information...

Report : timing

-path full
-delay max
-max_paths 1

Design : counter--ent
Version. 1998.02-i

Date : Tue Mar 16 14:28:52 1999

Operating Conditions �9

Wire Loading Model Mode" top

(UID-85)

Design Wire Loading Model Library

coun t er_en t 05x05 c l ass

Startpoint: mode (input port clocked by clock)

Endpoin t : internal_output_reg [3]
(rising edge-triggered flip-flop clocked by

clock)

Pa th Group: clock
Pa th Type: max

Point Incr Path

clock clock (rise edge) 0.00 0.00

clock network delay (ideal) O. O0 O. O0

input external delay 2.00 2. O0 f

mode (in) O. O0 2. O0 f
U87/Z (IVI) 0.24 2.24 r
U97/Z (ND2I) 0.12 2.36 f

U95/Z (ND2I) 0.25 2.61 r

312. APPENDIX C

U60/Z (ND2I)
U94/Z (MUX21LP)
U84/Z (MUX21LP)
internal_output_reg [3] /TE (FD2S)

data arrival time

0.19

0.54

0.44

0.00

clock clock (rise edge)

clock network delay (ideal)

internal_output_reg [3]/CP (FD2S)
library setup time

data required time

5.00

0.00

0.00
-1.25

data required time

data arrival time

2.80 f

3.34 r

3.78 f

3.78 f

3.78

5.00

5.00

5.00 r
3.75

3.75

3.75

-3. 78

slack (VIOLATED) -0.03

APPENDIX D
(PIPELINE MICROCONTROLLER

SYNTHESIS RESULTS--
TOP-DOWN COMPILATION)

The pipeline microcontroller example from Chapter 6 is synthesized with timing
constraints. The timing information is only on the top level of the microcontroller.
Compilation performed is Top-Down.
Read in the vhdl files.

dc_shell> read-format vhdl {decode.vhd

predecode, vhd rf . vhd ex. vhd microc, vhd}

Set the design constraints. Output delays are not set as outputs are flip-flop driven.

dc_shell> current_design = microc_ent

dc_shell> create_clock clock -name clock -period 25

dc_shell> set input_delay 3.0 -clock clock -max data*

dc_shell> set input_delay 3.0 -clock clock -max sourcel*

dc_shell> set_input_delay 3.0 -clock clock -max destina-

tion*

dc_shell> set_input_delay 3.0 -clock clock -max source2*

dc_shell> set input_delay 3.0 -clock clock -max inst

Compile with map effort medium.

dc_shell> compile -map_effort medium

dc_shell> report_timing -path full -delay max -

max_paths 1 -nworst I

313

3 1 4 APPENDIX D

Information: Updating design information...

Report : timing
-path full

-delay max

-max_paths 1

Des i gn �9 mi croc_ en t

Version: 1998.02-1

Date : Wed Mar 17 14:08:58 1999

Operating Conditions :

Wire Loading Model Mode: top

(UID-85)

Design Wire Loading Model Library

mi croc_ent 2 0x2 0 c l ass

S t ar tpo i n t : DUT_decode /d_command_reg [O]

(rising edge-triggered flip-flop clocked by

clock)

Endpoint : DUT_execute/int_ex_data_reg[31]

(rising edge-triggered flip-flop clocked by

clock)
Path Group: clock

Path Type: max

Point
.

clock clock (rise edge) 0

clock network delay (ideal) 0

DUT_decode/d_command_reg[O] /CP (FDIS) 0

DUT_decode/d_command_reg[O] /Q (FDIS) 1

DUT_decode/d_command[O] (decode_ent) 0

DUT_execute/d_command[O] (execute_ent) 0

DUT_execute/U308/Z (IVI) 0

DUT_execute/•311/Z (ND2I) 0

DUT_execute/U193/Z (MUX21LP) 0

DUT_execute/U437/Z (NR2I) 0

DUT_execute/U521/Z (ND2I) 0

DUT_execute/U171/Z (MUX21LP) 1

DUT_exe cu t e /mu l_ 87/mul t/mul t/A [0]

(execute_ent_DWO2_mul t_ 16_ 16_ 0)

DUT_ execu t e/mul_87/mul t/mul t ~US 84/Z2

(B3IP)

Incr Path

.00 0.00

.00 0.00

.00 0.00 r

.36 1.36 r

.00 1.36 r

.00 1.36 r

.36 1.72 f

.37 2.09 r

.47 2.56 f

.65 3.21 r

.48 3.69 f

.16 4.85 r

0.00 4.85 r

0.62 5.46 r

(PIPELINE MICROCONTROLLER SYNTHESIS RESULTS---TOP-DOWN COMPILATION) ~ | .5

DUT execute/mul_87/mul t/mul t/U1555/Z

(ND2I)

DUT execute/mu187/mul t/mul t/UI556/Z

(ND2Z)
DUT execu t e/mu I_ 87/mu i t/mu i t/U334/Z

(ND2I)

DUT_execu t e /mul_8 7 /mul t/mul t/U335/Z

(I V I)
DUT execute/mul_87/mul t/mul t/U748/Z

(ND2I)

DUT_execute/mul_87/mul t/mul t/U165/Z

(ENI)
DUT_execute/mul_87/mul t/mul t/U58/Z

(ENI)
DUT_ execu t e/mu l_ 87/mu I t/mu I t / U24 65 / Z

(MUX21L)

DUT_ execu t e/mu l_ 87/mu i t/mu i t/U83 7/Z

(ENI)
DUT_exe c u t e /mu18 7 /mu l t /mu l t/U23 70/Z

(zvz)
DUT_ execute/mul_87/mul t/mul t/U2129/Z

(ND2I)

DUT_execute/mu187/mul t/mul t /U167/Z

(AO3P)

DUT_ execute/mul_87/mul t/mul t/U1672/Z

(ND2Z)
DUT_exe cu t e /mu l_ 8 7 /mu l t/mul t/U416/Z

(ND2I)

DUT_execute/mul_87/mul t/mul t/U1674/Z

(ND2I)

DUT_execute/mu187/mul t/mul t ~Till/Z

(ND3P)
DUT_ exe cut e/mu i_ 87/mu I t/mu I t / U842/Z

(ENI)
DUT_execu t e /mu l_ 87/mul t/mul t/U4 60/Z

(ENI)
DUT_execute/mul_87/mul t/mul t/U492/Z

(ENI)
DUT_execute/mul_87/mul t/mul t ~Till O/Z

(MUX21LP)

DUT_execute /mul_8 7 /mul t/mul t/U329/Z

(ENI)
DUT_ execu t e/mul_ 87/mul t/mu i t/U252 6 / Z

(ENI)
DUT_execu t e /mu l_8 7 /mu l t/mul t/U850/Z

(ENI)

0.25

0.27

0.15

0.33

0.15

0.51

0.49

0 . 8 8

0.51

0.33

0.32

0.75

0.25

0.39

0.32

0.83

0.51

0.51

0.49

1.01

0.44

0.44

0.51

5.72 f

5.99 r

6.14 f

6.47 r

6.62 f

7.14 f

7.63 f

8.51 r

9.02 f

9.35 r

9.67 f

10.42 r

10.67 f

ii. 06 r

11.37 f

12.21 r

12.72 f

13.23 f

13.72 f

14.73 r

15.17 f

15.62 f

16.13 f

3 16 APPENDIX D

DUT_execute/mul_87/mul t/mul t/U2419/Z
(IVI)

D UT_ exe c u t e/mu i_ 87/mu i t/mu i t / U192 7 / Z

(ND2I)

DUT_exe cu t e /mu l_ 8 7 /mu l t/mul t/U1928/Z
(ND2I)

DUT_ execute/mul_87/mul t/mul t/U531/Z

(ENI)

DUT_ execu t e/mu l_ 87/mul t/mu i t/U254 0/Z

(ENI)

DUT_execute/mul_87/mul t/mul t/U514/Z

(ENI)

DUT_execu t e /mul_8 7 /mul t/mul t/U203/Z

(ENI)

DUT_ exe cut e/mu 1_ 87/mu i t/mu i t / U853/Z

(ENI)

DUT_execu t e/mul_87/mul t/mul t/U2435/Z

(IVI)

DUT_ exe c u t e/mu i_ 87/mu i t/mu i t / U2025/Z

(ND2I)

DUT_execute/mul_87/mul t/mul t/U1055/Z

(ND2I)

D UT_ ex e c u t e/mu i_ 87/mu i t/mu i t / U1107 / Z

(AO7P)

DUT_execute/mul_87/mul t/mul t/U1084/Z

(AN2E)
D UT_ ex e c u t e/mu i_ 87/mu i t/mu I t / U202 7/Z

(ND2I)
DUT_ execu te/mul_87/mul t/mul t/U384/Z

(ND2I)

DUT_execute /mul_8 7 /mul t/mul t/U385/Z

(IVI)

DUT_ exe cu t e /mu l_ 8 7 /mu l t/mul t/FS/B [18]

(execute-- ent_DWO l_add_ 30_ 0)

DUT_execute/mul_87/mul t/mul t/FS/U4 7/Z

(IVI)

DUT_ execu t e/mul_87/mul t/mul t/FS/UI 3 6/Z

(ND2I)

DUT_ execu t e/mul_87/mul t/mul t/FS/U8 6/Z

(ND2I)

DUT_ execu t e/mul_ 87/mul t/mu i t/FS/UI 0/Z

(xvx)
DUT_execu t e /mul_8 7 /mul t/mul t/FS/U41/Z

(AN2I)

0.33

0.15

0.33

0.44

0.51

0.44

0.44

0.51

0.33

0.25

0.31

0.36

0.62

0.27

0.15

0.33

0.00

0.15

0.33

0.25

0.26

0.36

16.46 r

16.62 f

16.94 r

17.39 f

17.90 f

18.35 f

18.79 f

19.31 f

19.64 r

19.89 f

20.20 r

20.56 f

21.18 f

21.45 r

21.60 f

21.93 r

21.93 r

22.08 f

22.40 r

22.66 f

22.92 r

23.28 r

(PIPELINE MICROCONTROLLER SYNTHESIS RESULTS---TOP-DOWN COMPILATION) ~ I 7

DUT_ execu t e/mul_ 87/mul t/mul t/FS/U179/Z
(_N'D 2 I)
DUT_execu t e/mul_87/mul t/mul t/FS/U42/Z

(ND2I)
DUT_execute/mu187/mul t/mul t/FS/U43/Z

(IVI)
DUT_execu t e/mul_87/mul t/mul t/FS/U3 6/Z

(ND2I)
DUT_execu t e /mul_8 7 /mul t/mul t/FS/U189/Z

(ND2I)
DUT_execute /mul_8 7 /mul t/mul t/FS/UI90/Z

(ND2I)
DUT_ execu t e/mu187/mul t/mul t/FS/U152/Z

(ND2I)
DUT_execute /mul_8 7 /mul t/mul t/FS/U16/Z

(ND3 P)
DUT_ exe cu t e/mu I_ 87/mu I t/mu i t/FS/U15/Z

(IVI)
DUT_ execu t e/mul 87/mul t/mul t/FS/U191/Z

(AO7P)
DUT_ execu t e/mul_87/mul t/mul t/FS/U64/Z

(ENI)
DUT_ exe cu t e/mu l_ 87/mu i t/mu i t/FS/SUM [29]

(execute-- ent_DWO l_add_ 30_ 0)
DUT_execute/mu187/mul t/mul t/PRODUCT [31]

(execute- ent_DWO2_mul t l 6 16-- 0)
DUT_execute/U510/Z (IVI)
DUT_execute/U546/Z (ND2I)
DUT_execute/U213/Z (ND2I)
DUT_execute/U214/Z (IVI)
DUT_execute/int_ex_data_reg [31]/D

(FDI)
data arrival time

clock clock (rise edge)

clock network delay (ideal)

DUT_execute/int_ex_data reg [31]/CP
(FDI)

library setup time

data required time

0.15

0.27

0.23

0.27

0.15

0.39

0 . 2 2

0.87

0 . 2 0

0.75

0.44

0.00

0.00

0.26

0.15

0.27

0.15

0 . 0 0

25.00

0.00

0.00

-0.80

data required time

data arrival time

23.43 f

23. 70 r

23.93 f

24.20 r

24.35 f

24.74 r

4.96 f

25.83 r

26.03 f

26.77 r

27.22 f

27.22 f

27.22 f

27.48 r

27.63 f

27.90 r

28.05 f

28.05 f

28.05

25.00

25.00

25.00 r

24.20

24.20

24.20

-28.05

slack (VIOLATED) -3.85

3 18 APPENDIX D

A setup violation of 3.85 ns is observed. A characterize command is executed to
characterize e x e c u t e - - e n t .

dc_shell> characterize DUT_execute
dc_shell> current_design = execute_ent
dc_she11> compile -map_effort high -
incremental_mapping
dc_she11> currentdesign = microc_ent
dc_she11> reporttiming -path full -delay max -
max_paths 1 -nworst 1

Information" Updating design information...

Report �9 timing
-path full
-delay max
-max_paths I

Design �9 mi croc_en t
Version" 1998.02-1

Date �9 Wed Mar 17 16.31"51 1999

Opera ting Condi ti ons �9

Wire Loading Model Mode" top

(UID-85)

Design Wire Loading Model Library

mi croc_ en t 2 0x2 0 c l ass

Startpoin t : DUT_execute/int_ex_destination_reg [2]
(rising edge-triggered flip-flop clocked by

clock)

Endpo in t : DUT_execute/int_ex_data_reg [31]
(rising edge-triggered flip-flop clocked by

clock)

Pa th Group: clock
Path Type: max

Point Incr Path

clock clock (rise edge) 0.00

clock network delay (ideal) O. O0

DUT_execute/int_ex_destination_reg [2]/CP
(FDI) O. O0

0 . 0 0
0 . 0 0

0 . 0 0 r

(PIPELINE MICROCONTROLLER SYNTHESIS RESULTS--TOP-DOWN COMPILATION) 3 ~ 9

DUT_execute/int_ex_destination_reg [21/Q

(FDI)

DUT_execute/U623/Z (ENI)

DUT_execute/U309/Z (ND2I)

DUT_execute/U204/Z (IVI)

DUT_execute/U202/Z (ND2I)

DUT_execute/U207/Z (AN2I)

DUT_execute/U521/Z (ND2I)

DUT_execute/U171/Z (MUX21LP)

DUT_ execu t e/mul_87/mul t/mul t/A [0]

(execu t e_en t_DWO 2_mul t_l 6_ 16_ 0)

DUT_ execu t e/mu l_ 87/mu i t/mu i t / U3230/Z

(IVI)
DUT_execute/mul_87/mul t/mul t/U3493/Z

(IVI)
DOT_execute/mul_87/mul t/mul t/U3490/Z

(ND2I)

DUT_ execute/mul_87/mul t/mul t/U3140/Z

(ND2I)

DUT_ execu t e/mu i 87/mu i t/mu i t / U29 77/Z

(ND2I)

DUT_execu t e /mul_8 7 /mul t/mul t/U3489/Z

(IVI)
DUT_ exe cu t e/mu l_ 87/mu i t/mu i t / U34 85/Z

(ND2X)
DUT_execute/mul_87 /mul t/mul t/U2988/Z

(ND2I)

DUT_ execu t e/mu l_ 87/mu i t/mu i t / U29 79/Z

(ND2I)

D UT_ ex e c u t e /mu l_ 8 7 /mu l t/mul t/U2982/Z

(ENI)
DOT_execute/mul_87/mul t/mul t/U3084/Z

(ENI)

DUT_ execu t e/mul_87/mul t/mul t/U3083/Z

(ENI)

D UT_ ex e c u t e/mu i_ 87/mu i t/mu I t / U2501/Z

(ENI)

D UT_ ex e c u t e /mu l_ 8 7 /mu l t/mul t/U838/Z

(ENI)
DOT_ execu t e/mu 1_ 87/mu i t/mu i t /U23 71/Z

(IVI)
DUT_execute/mul_87/mul t/mul t/U1671/Z

(ND2I)

DUT_execute/mul_87/mul t/mul t/U3054/Z

(ND2I)

DUT_ exe cut e/mu i_ 87/mu i t/mu i t / U305 6/Z

(ND2Z)

1.59

0.38

0.15

0.33

0.15

0.62

0.46

1.08

0 . 0 0

0.23

0.33

0.25

0.33

0.15

0.33

0.15

0.33

0.15

0.44

0.51

0.44

0.49

0.45

0.23

0.33

0.25

0.27

1.59 r

1.96 r

2.11 f

2.44 r

2.60 f

3.21 f

3.68 r

4.75 r

4.75 r

4.98 f

5.31 r

5.56 f

5.89 r

6.04 f

6.37 r

6.53 f

6.85 r

7.01 f

7.45 f

7.96 f

8.41 f

8.90 f

9.34 r

9.57 f

9.90 r

10.15 f

10.42 r

3 2 O A P P E N D I X D

DUT_ ex e cut e/mu i_ 87/mu i t/mu i t / U33 61/Z

(IVI)

DUT_execute/mu187/mul t/mul t/U3 064/Z

(ND2I)

DUT_ex e c u t e /mu l_ 8 7 /mu l t/mul t/U3556/Z

(ND2I)

DUT_execute/mu187/mul t /mul t /U2729/Z

(IVI)

DUT_execute/mul_87/mul t/mul t/U1677/Z

(ND2I)

DUT_execute/mul_87/mul t/mul t/U1678/Z

(ND2I)

DUT_execute/mul_8 7 /mul t/mul t/U1680/Z

(ND2I)

DUT_ exe cut e/mu l_ 87/mu i t/mu i t / U762 / Z

(ND2I)

DUT_ execu t e/mul_ 87/mul t/mul t/U3288/Z

(IVI)

DUT_ exe cut e/mu i 87/mu I t/mu i t / U3284/Z

(ND2I)

DUT_execu t e/mul_87/mul t/mul t/U3291/Z

(ND2I)

DUT_ ex e c u t e /mu l_ 8 7 /mu l t/mul t/U3299/Z

(MUX2 IL)

DUT_exe cu t e /mu l_8 7 /mu l t/mul t/U2511/Z

(ENI)
DUT_ execu t e/mul_ 87/mul t/mul t/U3300/Z

(ENI)
DUT_execute /mul_8 7 /mul t/mul t/U2390/Z

(IVI)

DUT_execute/mul_87/mul t/mul t/U3499/Z

(AO7P)

DUT_ execu t e/mul_ 87/mul t/mul t/U3529/Z

(ND2I)

DUT_ exe cut e/mu I 87/mu i t/mu i t / U55/Z

(ENI)
DUT_exe cu t e /mu l_8 7 /mu l t/mul t/U2139/Z

(ND2I)

DUT_ ex e c u t e/mul_ 87/mu i t/mul t/U520/Z

(ND2I)

DUT_execute/mu187/mul t/mul t/U519/Z

(NR2Z)
DUT_execu t e /mu l_8 7 /mu l t/mul t/U1864/Z

(ND2I)

DUT_execute/mu187/mul t/mul t/UI865/Z

(ND2I)

0.23

0.27

0.25

0.26

0 . 2 5

0.27

0.25

0.27

0.15

0.33

0.22

O. 62

0.49

0.45

0.41

0.75

0 . 3 8

0.51

0.33

0.15

0 . 6 5

0.15

0.33

10.65 f

10.92 r

11.17 f

ii. 44 r

11.69 f

ii. 96 r

12.21 f

12.48 r

12.63 f

12.96 r

13.18 f

13.80 r

14.29 f

14.74 r

15.15 f

15.89 r

16.28 f

16.79 f

17.12 r

17.27 f

17.92 r

18.07 f

18.40 r

(PIPELINE MICROCONTROLLER SYNTHESIS RESULTS--TOP-DOWN COMPILATION) 3 ~-

DUT_ execu t e/mu i_ 87/mu i t/mu i t / U2 701/Z
(ND2I)

DUT execute/mul_87/mul t/mul t/U2702/Z

(IVI)
DUT_ execu t e/mu i_ 87/mu i t/mu i t /U2 700/Z

(ND2I)

DUT_ execu t e/mu l_ 87/mu i t/mu i t / U2 698/Z
(ND2I)

DUT_execute/mu187/mul t /mul t/U2697/Z

(ND2I)

DUT_execute/mul_87/mul t/mul t/U3308/Z

(ND2I)

DUT_ execute/mul_87/mul t/mul t/U33 76/Z
(IVI)
DUT_ execu t e/mul_87/mul t/mul t/FS/B [22]

(execu t e_ en t_DWO 1_add_ 3 0_ 0)
DUT_ execu t e/mu l_ 87/mu i t/mu i t/FS/U79 / Z

(IVI)
DUT exe cut e/mu i_ 87/mu i t/mu i t/FS/U351/Z

(ND2I)

DUT execute/mu187/mul t/mul t/FS/U97/Z

(ND2I)

DUT_execu t e /mul_8 7 /mul t/mul t/FS/U143/Z

(ND2I)

DUT execute/mul_87/mul t/mul t/FS/U144/Z

(ND2I)

DUT_ exe cut e/mu i_ 87/mu i t/mu i t/FS/U9 6 / Z
(ND2I)

DUT execute/mul_87/mul t/mul t/FS/U303/Z

(ND2 I)

DUT_execute/mul_87/mul t/mul t/FS/U234/Z

(AN2I)

DUT_ execute/mul87/mul t/mul t/FS/U3 02/Z

(ND2I)

DUT_ execute/mul_87/mul t/mul t/FS/U305/Z
(ND2 I)

DUT_ execute/mul_87/mul t/mul t/FS/U307/Z
(ND2I)

DUT_ execu t e/mul_87/mul t/mul t/FS/U2 65/Z
(NR2I)

DUT_ execu t e/mul_87/mul t/mul t/FS/U2 64/Z
(ND2I)

DUT_ execu t e /mul_8 7 /mul t/mul t/FS/U2 63/Z
(ND2I)

DUT_execute/mul_87/mul t/mul t/FS/U2 67/Z

(ENI)

0.15

0.26

0.15

0.27

0.25

0.27

0.31

0.00

0.33

0.15

0.27

0.15

0.33

0.15

0.27

0.43

0.15

0.27

0.25

0.65

0.15

0.27

0.44

18.55 f

18.81 r

18.96 f

19.23 r

19.49 f

19.76 r

20.07 f

20.07 f

20.40 r

20.55 f

20.82 r

20.97 f

21.30 r

21.45 f

21.72 r

22.15 r

22.30 f

22.57 r

22.83 f

23.47 r

23.62 f

23.89 r

24.34 f

3 2 2 A P P E N D I X D

DUT_execu t e /mul_8 7 /mul t/mul t/FS/SUM[291
(execu t e_ en t_DWO l_add_ 3 0_ 0)
DUT_execute/mul_87/mul t/mult/PRODUCT [31]

(execute_ ent_DWO2_mul t_l 6_ 16_ 0)

DUT_execute/U510/Z (IVI)
DUT_execute/U546/Z (ND2I)
DUT_execute/U213/Z (ND2I)
DUT_execute/U214/Z (IVI)
DUT_execute/int_ex_data_reg [31] /D (FDI)
data arrival time

clock clock (rise edge)

clock network delay (ideal)

DUT_execute/int_ex_data_reg [31]/CP

(FD1)

library setup time

data required time

0.00

0.00

0.26

0.15

0.27

0.15

0.00

25.00

0.00

0 . 0 0
- 0 . 8 0

24.34 f

24.34 f

24.60 r

24.75 f

25.02 r

25.17 f

25.17 f

25.17

25.00

25.00

25.00 r

24.20

24.20

data required time

data arrival time

24.20

-25.17

slack (VIOLATED) -0.97

Setup violation is reduced to -0.97 ns. Design execute_ent is flattened.

tic_shell> current_design = execute_ent

tic_shell> ungroup -all -flatten

dc_she11> compile -map effort high -

incremental_mapping

dc_shell> current_design = microc_ent

tic_shell> report_timing -path full -delay max -

max_paths I -nworst I

Information. Updating design information...

Report �9 timing

-path full

-delay max

-max_paths 1

Design �9 microc_ent

Version" 1998.02-1

Date : Wed Mar 17 17:06:39 1999

(UID-85)

(PIPELINE MICKOCONTROLLEK SYNTHESIS RESULTS---TOP-DOWN COMPILATION) ~ 2~

Operating Conditions �9

Wire Loading Model Mode. top

Design Wire Loading Model Library

mi croc_ en t 2 0x2 0 cl ass

Startpoin t �9 DUT_execute/int_ex_destination_reg [3]

(rising edge-triggered flip-flop clocked by

clock)

Endpoin t �9 DUT_execute/int_ex_data_reg [24]

(rising edge-triggered flip-flop clocked by

clock)

Path Group" clock

Path Type �9 max

Point Incr Path

clock clock (rise edge) 0.00

clock network delay (ideal) 0.00

DUT_ execute/int_ex_destination_reg [3]/CP

(FDI) O . 00

DUT_execute/int_ex_destination_reg [3]/Q

(FD1)

DUT_ execu t
DUT execut

DUT_ execu t

DUT_ execu t
DUT_ execu t
DUT_ execu t
DUT_execut

DUT_ execu t
(IVI)

1.59

e/U624/Z (ENI) O. 38
e/U310/Z (ND2I) 0.15
e/U203/Z (IVI) 0.33
e/U202/Z (ND2I) 0.15
e/U207/Z (AN2I) 0.62
e/U521/Z (ND2I) 0.46
e/UI71/Z (MUX21LP) i. 08
e/mu l_ 87/mu I t/mu i t / U3230/Z

DUT_execute/mul_87/mul t/mul t/U3493/Z

(IVI)
DUT_ ex e c u t e /mu l_ 8 7 /mu l t/mul t/U3490/Z

(ND2I)

DUT_ execute/mu1_87/mul t/mul t/U314 0/Z

(ND2I)

DUT_ execu t e/mul_87/mul t/mul t/U29 77/Z
(ND2I)

DUT_execute/mu187/mul t/mul t/U3489/Z

(IVI)
DUT_ execu t e/mul_87/mul t/mul t/U34 85/Z

(ND2I)

0.23

0 . 3 3

0.25

0.33

0.15

0.33

0.15

0 . 0 0
0 . 0 0

0.00 r

1.59 r

1.96 r

2.11 f

2.44 r

2.60 f

3.21 f

3.68 r

4.75 r

4.98 f

5.31 r

5.56 f

5.89 r

6.04 f

6.37 r

6.53 f

3 2 4 A P P E N D I X D

DUT_ exe cu t e/mu i_ 87/mu i t/mu i t / U2988/Z
(ND2I)

DUT_execute/mul_87/mul t/mul t/U2979/Z
(ND2I)

DUT_execute/mu187/mul t /mul t /U29 82 /Z

(ENI)
DUT_ exe c u t e/mu l_ 87/mu I t/mu I t / U3084/Z

(ENI)
DUT_ ex e cut e/mu l_ 87/mu i t/mu i t / U3081/Z

(ENI)
D UT_ ex e c u t e /mu l_ 8 7 /mu l t/mul t/U2124/Z

(ND2I)

DUT_execute/mul_87/mul t/mul t/U3094/Z

(Ao3P)
DUT_ execu t e/mul_87/mul t/mul t/U309 7/Z

(IVI)

DUT_execute/mul_87/mul t/mul t/U3103/Z

(ENI)
DUT_ exe c u t e/mu l_ 87/mu i t/mu i t / U25 66 / Z

(ENI)
DUT_execute/mul_87/mul t/mul t/U457/Z

(ENI)
DUT_execute/mul_87/mul t/mul t/U2832/Z

(ENI)
DUT_execute/U816/Z (ENI)

D UT_ ex e c u t e/mu l_ 87/mu i t/mu i t / U2 772 / Z
(ENI)
DUT_execute/mu187/mul t /mul t /U3 000/Z

(ENI)
DUT_ execu t e/mul_87/mul t/mul t/U24 07/Z

(IVI)

DUT_ exe cu t e/mu i_ 87/mu i t/mu i t / U1895/Z
(ND2I)

DUT_execute/mu187/mul t /mul t /U1896/Z

(ND2I)

DUT_ exe cu t e/mu i_ 87/mu i t/mu i t / U2418/Z

(ENI)
DUT_execute/mul_87/mul t/mul t/U2533/Z

(ENI)
DUT_ execu t e/mu l_ 87/mu i t/mu i t/U2 714/Z

(ENI)
DUT_ execu t e/mu l_ 87/mu i t/mu i t/U2 712/Z

(ENI)
DUT_execu t e/mul_87/mul t/mul t/U852/Z

(ENI)

0.33

0.15

0.44

0.51

0.52

0.32

0.75

0.23

0.44

0.44

0.51

0.44

0.44

0.44

0.51

0.33

0.15

0.33

0.44

0.51

0.44

0.44

0.51

6.85 r

7.01 f

7.45 f

7.96 f

8.48 r

8.80 f

9.54 r

9.77 f

10.22 f

10.66 f

11.18 f

11.62 f

12.06 f

12.51 f

13.02 f

13.35 r

13.51 f

13.83 r

14.28 f

14.79 f

15.24 f

15.68 f

16.20 f

(PIPELINE MICROCONTROLLER SYNTHESIS RESULTS---TOP-DOWN COMPILATION) ~ ~-~

DUT_ exe cut e/mu i_ 87/mu i t/mu i t / U3125/Z

(ENI)
DUT_execute/U838/Z (ENI)

DUT_execute/U834/Z (ENI)

DUT_execute/U835/Z (ENI)

DUT_execute/mul_87/mul t/mul t/U3 004/Z
(IVI)
DUT_ execu t e/mu l_ 87/mu i t/mu I t /U3 005/Z

(ND2I)

DUT_ execute/mul_8 7 /mul t/mul t/U3 00 6/Z

(ND2I)

DUT_ exe cut e/mu i_ 8 7/mu I t/mu i t / U3 007/Z

(IVI)
DUT_ exe c u t e/mu i_ 8 7/mu I t/mu i t /U3 017/Z

(ND2I)

DUT_ exe cu t e/mu l_ 87/mu I t/mu i t / U3 018/Z

(IVI)
DUT_execute/mu187/mul t/mul t/U3 032/Z

(MUX21LP)

DUT_ execu t e/mu l_ 8 7/mu i t/mu I t / U3 033/Z

(ND2I)

DUT_execute/mul_87/mul t/mul t/U2814/Z

(ENI)
DUT_ ex e c u t e /mu l_ 8 7 /mu l t/mul t/U2813/Z

(ENI)
DUT_ execu t e/mul_ 87/mul t/mul t/FS/U2 89/Z

(ND2I)

D UT_ ex e cut e/mu i_ 87/mu I t/mu I t/FS/U2 88/Z

(NR2I)

DUT_ execu t e/mul_8 7 /mul t/mul t/FS/U28 7/Z

(ND2I)

DUT_execute/U889/Z (ND2I)

DUT_execute/U858/Z (ND2I)

DUT_execute/U839/Z (ND2I)

DUT_ exe cut e/mu l_ 8 7/mu i t/mu i t/FS/U319/Z

(ND2I)

DUT_execute /mul_8 7 /mul t/mul t/FS/U103/Z

(MUX21L)

DUT_execute/U572/Z (ND2I)

DUT_execute/U249/Z (ND2I)

DUT_execute/int_ex_data_reg [24] /D (FDI)

data arrival time

0.51

0.51

0.44

0.51

0.26

0.15

0.27

0.15

0.27

0.20

0.57

0.15

0.49

0.45

0.15

0.65

0.46

0.33

0.35

0.27

0.22

0.88

0.15

0.27

0.00

16.71 f

17.22 f

17.67 f

18.18 f

18.45 r

18.60 f

18.87 r

19.01 f

19.28 r

19.48 f

20.06 r

20.21 f

20.70 f

21.14 r

21.30 f

21.94 r

22.40 f

22.72 r

23.08 f

23.35 r

23.57 f

24.45 r

24.60 f

24.87 r

24.87 r

24.87

clock clock (rise edge)

clock network delay (ideal)

2 5 . 0 0
0 . 0 0

2 5 . 0 0
2 5 . 0 0

:326 APPENDIX D

DUT_execute/int_ex_data_reg [24]/CP
(FDI)
library setup time

data required time

0.00 25.00 r

-0.80 24.20

24.20

data required time

data arrival time

slack (VIOLATED)

24.20

-24.87

-0.67

Setup timing violation reduced to -0.67 ns. Command balance_registers is
executed.

dc_shell> current_design = microc_ent
dc_shell> balance_registers
dc_shell> reporttiming -path full -delay max -
max_paths 1 -nworst I

Information" Updating design information...

Report �9 timing
-path full
-delay max
-max_paths 1

Design �9 microc_ent
Version" 1998.02-1

Date �9 Wed Mar 17 19.19.51 1999

Opera t ing Condi t ions"

Wire Loading Model Mode" top

(UID-85)

Design Wire Loading Model Library

mi croc_ent 20x2 0 c l as s

Startpoint : microc_ent_REG894_S12
(rising edge-triggered flip-flop clocked by

clock)

Endpoin t " microc_ent_REG381_S14
(rising edge-triggered flip-flop clocked by

clock)

(PIPELINE MICROCONTROLLER SYNTHESIS RESULTS---TOP-DOWN COMPILATION) ~ ~ I

Path Group. clock

Path Type. max

Point Incr Path

clock clock (rise edge)

clock network delay (ideal)

microc_ent_REG894_S12/CP (FDI)

microc_ent_REG894_S12/Q (FDI)

DUT_execute/U609/Z (ND2I)

DUT_execute/U237/Z (ND2I)

UI37/Z (IVI)

DUT_execute/U212/Z (MUX21LP)

DUT_execu t e/mul_87/mul t/mul t/U2 83/Z2

(B3IP)

DUT_ execu t e/mul_ 87/mul t/mul t/UI 661/Z

(ND2I)

DUT_execu te /mul_8 7 /mul t/mul t/U1662/Z

(ND2I)

DUT_execu t e /mu l_ 8 7 /mu l t/mul t/U359/Z

(ND2I)

DUT_ execu t e/mu l_ 8 7/mu i t/mu i t / U41/Z

(IVI)

DUT_exe cu t e /mu l_8 7 /mu l t/mul t/U2801/Z

(ND2I)

DUT_execute/mul_8 7/mul t/mul t/U2 799/Z
(zNz)

DUT_execute/mul_87/mul t/mul t/U413/Z
(ENI)
DUT_execute/U965/Z (ENI)

DUT_execute/U953 /Z (ENI)

DUT_execute/mul_87/mul t/mul t/U2519/Z
(ENI)
DUT_ execu t e/mul_ 87/mul t/mul t/U84 5/Z

(ENI)
DUT_ execu te/mul_87/mul t/mul t/U24 02/Z

(IVI)

DUT_ execute/mul_8 7 /mu l t/mul t/UI 873/Z

(ND2I)

DUT_execute/mul_87/mul t/mul t/U1874/Z

(ND2I)

DUT_execu t e /mu l_ 8 7 /mu l t/mul t/U449/Z

(ENI)
DUT_execute/mul_87/mul t/mul t/U2532/Z

(ENI)
DUT_execute/mul_87/mul t/mul t/U3 7/Z

(ENI)

0.00

0.00

0.00

4.97

0.15

0.39

0.28

0.77

0.50

0.25

0.27

0.15

0.33

0.25

0.44

0.56

0.44

0.58

0.49

0.51

0.33

0.15

0.33

0.56

0.56

0.51

0.00

0.00

0.00 r

4.97 r

5.12 f

5.51 r

5.79 f

6.56 r

7.06 r

7.31 f

7.58 r

7.73 f

8.06 r

8.32 f

8.76 f

9.32 f

9.77 f

10.35 f

10.84 f

ii. 35 f

11.69 r

11.84 f

12.17 r

12.72 f

13.28 f

13.80 f

3 28 APPENDIX D

DUT_execute/mul_87/mul t/mul t/U2538/Z

(ENI)

DUT_ exe cut e/mu l_ 87/mu i t/mu i t / U243 0/Z

(ENI)

DUT_execute/mu187/mul t /mul t/U2177/Z

(ND2I)

DUT_execu t e /mu l_ 8 7 /mu l t/mul t/[71981/Z

(ND3P)

DUT_execute/mu187/mul t/mul t/U74/Z

(IVI)

DUT_ exe cut e/mu i_ 87/mu i t/mu i t / U2 676/Z

(ENI)

DUT_execute/mul 87/mul t/mul t/U254 6/Z

(ENI)

DUT_execute/mul_87/mul t/mul t/U398/Z

(ENI)

DUT_ execu t e/mu i_ 8 7/mu i t/mu i t / U2 04 5/Z

(ND2I)

DUT_ execut e/mul 87/mul t/mul t/U2 04 6/Z

(ND2 I)

DUT_execu t e /mu l_ 8 7 /mu l t/mul t/U204 7 / Z

(ND2I)

DUT_execute/mu187/mul t /mul t /Ul104 /Z

(ND2I)

DUT_ execute/mul 87/mul t/mul t/U3 02 6/Z

(ND3P)

microc_ent_REG3 81_S14 /D (FDI)

data arrival time

0.49 14.29 f

0.45 14.73 r

0.38 15.12 f

0.87 15.99 r

0.20 16.19 f

0.58 16.77 f

0.51 17.28 f

0.51 17.80 f

0.27 18.07 r

0.25 18.32 f

0.33 18.65 r

0.38 19.03 f

0.76 19.80 r

0.00 19.80 r

19.80

clock clock (rise edge)

clock network delay (ideal)

microc_ent_REG381_S14 /CP (FDI)

library setup time

data required time

25.00 25.00

0.00 25.00

O. O0 25. O0 r

-0.80 24.20

24.20

data required time

data arrival time

24.20

-19.80

slack (MET) 4.40

Timing violation of-3 .85 ns is now optimized to be a positive slack of 4.40 ns.

APPENDIX E
(EDIF FILE OF SYNTHESIZED

MICROCONTROLLER EXAMPLE
FROM CHAPTER 6)

A sample example of the EDIF file from the synthesized microcontroller example of
Chapter 6.

(edif Synopsys_edif (edifVersion 2 0 O) (edifLevel 0)

(keywordMap (keywordLevel 0))

(status

(written (timeStamp 1999 4 5 20 ii 34)

(program "Synopsys Design Compiler" (Version "1998.02-1 "))

(da taOrigin "company ") (au thor "designer ")
)

(external (rename generic_sdb "generic. sdb") (edifLevel O)

(technology (numberDefinition (scale 1 (e 2480469 -I~) (unit DISTANCE)))

(figureGroup default) (figureGroup text_layer (color 99 50 0))

(figureGroup variable_layer (color 99 50 O))

(figureGroup net_name_layer (color i00 I00 I00))

(figureGroup constraint_layer (color 100 0 0))

(figureGroup symbol_name_layer (color 100 100 100))

(figureGroup designware_layer (color 100 0 0))

(figureGroup bus_osc_layer (color 100 100 0))

(figureGroup hierarchy_name_layer (color 100 100 100))

(figureGroup bus_net_type_layer (color 99 50 0))

(figureGroup bus_net_layer (color 0 59 100))

(figureGroup template_layer (color 0 70 70))

(figureGroup cell_layer (color 100 100 0))

(figureGroup net_layer (color 0 100 100))

(figureGroup osc_layer (color 100 100 0))

329

3 3 0 APPENDIX E

(figureGroup hierarchy_layer (color I00 i00 O))

(figureGroup template_text_layer (color I00 i00 I00))

(figureGroup fat_layer (color 99 0 O))

(figureGroup port_layer (color i00 i00 O))

(figureGroup cell_name_layer (color i00 i00 i00))

(figureGroup bus_cell_name_layer (color i00 i00 I00))

(figureGroup designware_name_layer (color i00 100 i00))

(figureGroup cell_ref_name_layer (color I00 i00 i00))

(figureGroup bus_port_width_layer (color 99 50 O))

(figureGroup bus_net_name_layer (color I00 i00 I00))

(figureGroup port_name_layer (color i00 i00 i00))

(figureGroup bus_cell_layer (color 0 I00 i00))

(figureGroup clock_layer (color I00 0 0))

(figureGroup bit_mapper_name_layer (color i00 i00 I00))

(figureGroup pin_layer (color 99 99 O))

(figureGroup pin_name_layer (color i00 i00 i00))

(figureGroup osc_name_layer (color i00 i00 i00))

(figureGroup bus_port_name_layer (color 100 i00 i00))

(figureGroup bus_loin_name_layer (color i00 i00 i00))

(figureGroup bus_osc_name_layer (color i00 i00 i00))

(figureGroup bus_ripper_type_layer (color 99 50 O))

(figureGroup symbol_layer (color i00 i00 0))

(figureGroup type_mapper_name_layer (color 99 50 O))

(figureGroup bus_compound_name_layer (color I00 I00 i00))

(figureGroup bus_port_layer (color i00 i00 0))

(figureGroup bus_ripper_name_layer (color I00 i00 I00))

(figureGroup bus_ripper_layer (color I00 i00 O))
)

(cell ripper (cellType RIPPER)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port (array bus_end 32)) (port (array w 32))

(joined (portRef bus_end) (portaef w))
)

)

)

(cell AN2I (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port Z (direction OUTPUT))
)

)

)

(cell FDIS (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port D (direction INPUT)) (port CP (direction INPUT))

(port TI (direction INPUT)) (port TE (direction INPUT))

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) :3 3 |

(port Q (direction OUTPUT)) (port QN (direction OUTPUT))
)

(cell IVDA (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Y (direction OUTPUT))

(port Z (direction OUTPUT))
)

)

)

(cell AN3P (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port Z (direction OUTPUT))
)

)

)

(cell A03 (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port D (direction INPUT))

(port Z (direction OUTPUT))
)

)

)

(cell IVI (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Z (direction OUTPUT)))
)

)

(cell EOI (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port Z (direction OUTPUT))
)

)

)

(cell AO3P (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port D (direction INPUT))

(port Z (direction OUTPUT))
)

)

~ 7_ APPENDIX E

(cell IV (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Z (direction OUTPUT)))

)

)

(cell ND3P (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port Z (direction OUTPUT))

)

)

)

(cell IVDAP (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Y (direction OUTPUT))

(port Z (direction OUTPUT))

)

)

)

(cell OR2I (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port Z (direction OUTPUT))

)

)

)

(cell A07 (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port Z (direction OUTPUT))

)

)

)

(cell AO7P (cellType GENERIC)

(view Schema ti c_represen ta ti on (vi ewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port Z (direction OUTPUT))

)

)

)

(cell B4IP (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Z (direction OUTPUT)))

)

)

(cell B5IP (cellType GENERIC)

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) :3:3:3

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Z (direction OUTPUT)))
)

)

(cell ND3 (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port Z (direction OUTPUT))
)

)

)

(cell ND4 (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port D (direction INPUT))

(port Z (direction OUTPUT))
)

)

(cell NR2 (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port Z (direction OUTPUT))
)

)

)

(cell ND4P (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port D (direction INPUT))

(port Z (direction OUTPUT))
)

)

)

(cell logic_O (cellType GENERIC)

(view Schematic__representation (viewType SCHEMATIC) (interface (port a)))
)

(cell ENI (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port Z (direction OUTPUT))
)

)

)

(cell ND2 (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

3 3 4 A P P E N D I X E

(interface (port A (direction INPUT))

(port Z (direction OUTPUT))
)

(port B (direction INPUT))

(cell NR3 (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port C (direction INPUT)) (port Z (direction OUTPUT))
)

)

)

(cell ND2I (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port Z (direction OUTPUT))
)

)

)

(cell OR2P (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port Z (direction OUTPUT))
)

)

)

(cell logic_l (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC) (interface (port a)))
)

(cell IVAP (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Z (direction OUTPUT)))
)

)

(cell NR2I (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port Z (direction OUTPUT))
)

)

)

(cell B4I (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Z (direction OUTPUT)))
)

)

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) 3 3

)

(external (rename class_sdb "class. sdb") (edifLevel O)

(technology (numberDefinition (scale 1 (e 2480469 -12) (unit DISTANCE)))

(figureGroup default) (figureGroup text_layer (color 99 50 0))

(figureGroup variable_layer (color 99 50 O))

(figureGroup net_name_layer (color I00 i00 i00))

(figureGroup constraint_layer (color i00 0 0))

(figureGroup symbol_name_layer (color i00 i00 i00))

(figureGroup designware_layer (color I00 0 O))

(figureGroup bus_osc_layer (color i00 i00 O))

(figureGroup hierarchy_name_layer (color i00 i00 i00))

(figureGroup bus_net_type_layer (color 99 50 O))

(figureGroup bus_net_layer (color 0 59 i00))

(figureGroup template_layer (color 0 70 70))

(figureGroup cell_layer (color i00 i00 0))

(figureGroup net_layer (color 0 i00 i00))

(figureGroup osc_layer (color i00 i00 0))

(figureGroup hierarchy_layer (color i00 i00 0))

(figureGroup template_text_layer (color i00 i00 i00))

(figureGroup fat_layer (color 99 0 O))

(figureGroup port_layer (color i00 i00 O))

(figureGroup cell_name_layer (color i00 i00 i00))

(figureGroup bus_cell_name_layer (color i00 i00 i00))

(figureGroup designware_name_layer (color i00 i00 i00))

(figureGroup cell_ref_name_layer (color i00 i00 i00))

(figureGroup bus_port_width_layer (color 99 50 O))

(figureGroup bus_net_name_layer (color i00 i00 i00))

(figureGroup port_name_layer (color i00 i00 I00))

(figureGroup bus_cell_layer (color 0 i00 i00))

(figureGroup clock_layer (color i00 0 0))

(figureGroup bit_mapper_name_layer (color i00 i00 i00))

(figureGroup pin_layer (color 99 99 O))

(figureGroup pin_name_layer (color i00 i00 i00))

(figureGroup osc_name_layer (color i00 i00 I00))

(figureGroup bus_port_name_layer (color i00 i00 i00))

(figureGroup bus_pin_name_layer (color i00 I00 i00))

(figureGroup bus_osc_name_layer (color i00 i00 i00))

(figureGroup bus_ripper_type_layer (color 99 50 O))

(figureGroup symbol_layer (color i00 i00 O))

(figureGroup type_mapper_name_layer (color 99 50 O))

(figureGroup bus_compound_name_layer (color i00 i00 I00))

(figureGroup bus_port_layer (color i00 i00 0))

(figureGroup bus_ripper_name_layer (color i00 i00 i00))

(figureGroup bus_ripper_layer (color i00 i00 O))
)

(cell B2I (cellType GENERIC)

~ 6 APPENDIX E

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Z1 (direction OUTPUT))

(port Z2 (direction OUTPUT))

)

)

)

(cell B2IP (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Z1 (direction OUTPUT))

(port Z2 (direction OUTPUT))

)

)

)

(cell B3IP (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port Z1 (direction OUTPUT))

(port Z2 (direction OUTPUT))

)

)

)

(cell FDI (cellType GENERIC)

(view Schematlc_representation (viewType SCHEMATIC)

(interface (port D (direction INPUT)) (port CP (direction INPUT))

(port Q (direction OUTPUT)) (port QN (direction OUTPUT))

)

)

)

(cell MUX21H (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port S (direction INPUT)) (port Z (direction OUTPUT))
)

)

)

(cell MUX21HP (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port S (direction INPUT)) (port Z (direction OUTPUT))

)

)

)

(cell MUX21L (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port S (direction INPUT)) (port Z (direction OUTPUT))

)

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) ~ ~

)

)

(cell MUX21LP (cellType GENERIC)

(view Schematic_representation (viewType SCHEMATIC)

(interface (port A (direction INPUT)) (port B (direction INPUT))

(port S (direction INPUT)) (port Z (direction OUTPUT))

)

)

)

)

(library DESIGNS (edifLevel 0)

(technology (numberDefinition (scale 1 (e 2480469 -12) (unit DISTANCE)))

(figureGroup default) (figureGroup text_layer (color 99 50 0))

(figureGroup variable_layer (color 99 50 0))

(figureGroup net_name_layer (color i00 i00 i00))

(figureGroup constraint_layer (color 100 0 0))

(figureGroup symbol_name_layer (color 100 100 100))

(figureGroup designware_layer (color 100 0 0))

(figureGroup bus_osc_layer (color 100 100 0))

(figureGroup hierarchy_name_layer (color 100 100 100))

(figureGroup bus_net_type_layer (color 99 50 0))

(figureGroup bus_net_layer (color 0 59 100))

(figureGroup template_layer (color 0 70 70))

(figureGroup cell_layer (color 100 100 0))

(figureGroup net_layer (color 0 100 100))

(figureGroup osc_layer (color 100 100 0))

(figureGroup hierarchy_layer (color 100 100 0))

(figureGroup template_text_layer (color 100 100 100))

(figureGroup fat_layer (color 99 0 0))

(figureGroup port_layer (color 100 100 0))

(figureGroup cell_name_layer (color 100 100 100))

(figureGroup bus_cell_name_layer (color 100 100 100))

(figureGroup designware_name_layer (color 100 100 100))

(figureGroup cell_ref_name_layer (color 100 100 100))

(figureGroup bus__port_width_layer (color 99 50 0))

(figureGroup bus_net_name_layer (color 100 100 100))

(figureGroup port_name_layer (color 100 100 100))

(figureGroup bus_cell_layer (color 0 100 100))

(figureGroup clock_layer (color 100 0 0))

(figureGroup bi t_mapper_name_layer (color 100 100 100))

(figureGroup pin_layer (color 99 99 0))

(figureGroup pin_name_layer (color 100 100 100))

(figureGroup osc_name_layer (color 100 100 100))

(figureGroup bus_port_name_layer (color 100 100 100))

(figureGroup bus_pin_name_layer (color i00 100 I00))

(figureGroup bus_osc_name_layer (color 100 100 100))

3 3 8 APPENDIX E

(figureGroup bus_ripper_type_layer (color 99 50 0))

(figureGroup symbol_layer (color I00 100 0))

(figureGroup type_mapper_name_layer (color 99 50 O))

(figureGroup bus_compound_name_layer (color i00 i00 i00))

(figureGroup bus_loort_layer (color i00 i00 0))

(figureGroup bus_ripper_name_layer (color i00 I00 I00))

(figureGroup bus_ripper_layer (color i00 i00 O))
)

(cell microc_ent (cellType GENERIC)

(view Schema ti c_represen ta ti on (vi ewType SCHEMATIC)

(interface (port clock (direction INPUT))

(port (array (rename data_31 0 "data [31:0] ") 32) (direction INPUT))

(port (array (rename destination 3 0 "destination[3:0]") 4)

(direction INPUT)
)

(port (array (rename inst 2 0 "inst[2:0]") 3) (direction INPUT))

(port jump (direction OUTPUT))

(port (array (rename output_31 0 "output[31:O]") 32) (direction OUTPUT))

(port (array (rename sourcel 3 0 "sourcel[3:0]") 4) (direction INPUT))

(port (array (rename source2 3 0 "source2[3:0] ") 4) (direction INPUT))

(symbol (boundingBox (rectangle (pt -3072 -6144) (pt 3072 6144)))

(portImplementation clock

(connectLocation (figure cell_layer (dot (pt -3072 5120))))
)

(portImplementation data_31 0

(connectLocation (figure cell_layer (dot (pt -3072 3072))))
)

(portImplementation destination 3 0

(connectLocation (figure cell_layer (dot (pt -3072 1024))))
)

(portImplementation inst 2 0

(connectLocation (figure cell_layer (dot (pt -3072 -1024))))
)

(portImplementation sourcel 3 0

(connectLocation (figure cell_layer (dot (pt -3072 -3072))))
)

(portImplementation source2 3 0

(connectLocation (figure cell_layer (dot (pt -3072 -5120))))
)

(portImplementation jump

(connectLocation (figure cell_layer (dot (pt 3072 1024))))
)

(portImplementation output_31 0

(connectLocation (figure cell_layer (dot (pt 3072 -1024))))
)

(figure cell_layer (path (pointList (pt -3072 -6144) (pt -3072 6144))))

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) :3:3

(figure cell_layer (path (pointList (pt 3072 -6144) (pt 3072 6144))))

(figure cell_layer (path (pointList (pt -3072 -6144) (pt 3072 -6144))))

(figure cell_layer (path (pointList (pt -3072 6144) (pt 3072 6144))))
)

)

(contents

(page &l (pageSize (rectangle (pt -11909424 -7680) (pt 11876 6322432)))

(portImplementation clock

(connectLocation (figure port_layer (dot (pt -11888640 6321152))))

(figure port_layer

(path (pointList (pt -11891200 6320512) (pt -11891200 6321792)))
)

(figure port_layer

(path (pointList (pt -11891200 6321792) (pt -11889920 6321792)))
)

(figure port_layer

(path (pointList (pt -11891200 6320512) (pt -11889920 6320512)))
)

(figure port_layer

(path (pointList (pt -11889920 6320512) (pt -11888640 6321152)))
)

(figure port_layer

(path (pointList (pt -11889920 6321792) (pt -11888640 6321152)))
)

)

(portImplementation data_31 0

(connectLocation (figure bus_port_layer (dot (pt -11888640 6024192))))

(figure bus_port_layer

(path (pointList (pt -11891200 6023552) (pt -11891200 6024832)))
)

(figure bus_port_layer

(path (pointList (pt -11891200 6024832) (pt -11889920 6024832)))
)

(figure bus l3ort_layer

(path (pointList (pt -11891200 6023552) (pt -11889920 6023552)))
)

(figure bus_port_layer

(path (pointList (pt -11889920 6023552) (pt -11888640 6024192)))
)

(figure bus_port_layer

(path (pointList (pt -11889920 6024832) (pt -11888640 6024192)))
)

)

(portImplementation destination 3 0

(connectLocation (figure bus_port_layer (dot (pt -11888640 2507776))))

(figure busport_layer

3 4 0 A P P E N D I X E

(path (pointList (pt -11891200 2507136) (pt -11891200 2508416)))
)

(figure bus_port_layer

(path (pointList (pt -11891200 2508416) (pt -11889920 2508416)))
)

(figure bus_port_layer

(path (pointList (pt -11891200 2507136) (pt -11889920 2507136)))
)

(figure bus_port_layer

(path (pointList (pt -11889920 2507136) (pt -11888640 2507776)))
)

(figure bus_port_layer

(path (pointList (pt -11889920 2508416) (pt -11888640 2507776)))
)

)

(portImplementation inst 2 0

(connectLocation (figure bus_port_layer (dot (pt -11888640 2321408))))

(figure bus__port_layer

(path (pointList (pt -11891200 2320768) (pt -11891200 2322048)))
)

(figure bus__port_layer

(path (pointList (pt -11891200 2322048) (pt -11889920 2322048)))
)

(figure bus_port_layer

(path (pointList (pt -11891200 2320768) (pt -11889920 2320768)))
)

(figure bus_port_layer

(path (pointList (pt -11889920 2320768) (pt -11888640 2321408)))
)

(figure bus_loort_layer

(path (pointList (pt -11889920 2322048) (pt -11888640 2321408)))
)

)

(portImpl ementa ti on jump

(connectLocation (figure port_layer (dot (pt -6144 2652160))))

(figure port_layer

(path (pointList (pt -6144 2651520) (pt -6144 2652800)))
)

(figure port_layer

(path (pointList (pt -6144 2652800) (pt -4864 2652800)))
)

(figure port_layer

(path (pointList (pt -6144 2651520) (pt -4864 2651520)))
)

(figure port_layer

(path (pointList (pt -4864 2651520) (pt -3584 2652160)))

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) ~ 4 [

)

(figure port_layer

(path (pointList (pt -4864 2652800) (pt
)

)

(portImplementation output_31 0

(connectLocation (figure bus_port_layer

(figure bus_port_layer

(path (pointList (pt-6144 6309248) (pt
)

(figure bus__port_layer

(path (pointList (lot -6144 6310528) (pt
)

(figure bus_port_layer

(path (pointList (pt -6144 6309248) (pt
)

(figure bus_port_layer

(path (pointList (pt-4864 6309248) (.Lot
)

(figure bus_port_layer

(path (pointList (pt-4864 6310528) (pt
)

)

(portImplementation sourcel 3 0

(connectLocation (figure bus_port_layer

(figure bus_port_layer

(path (pointList (pt -11891200 2687360)
)

(figure bus_port_layer

(path (pointList (pt -11891200 2688640)
)

(figure bus_port_layer

(path (pointList (pt -11891200 2687360)
)

(figure bus_port_layer

(path (pointList (pt -11889920 2687360)
)

(figure bus_port_layer

(path (pointList (pt-11889920 2688640)
)

)

(portImplementation source2 3 0

(connectLocation (figure bus_port_layer

(figure bus_port_layer

(path (pointList (pt -11891200 2705792)
)

-3584 2652160)))

(dot (pt -6144 6309888))))

-6144 6310528)))

-4864 6310528)))

-4864 6309248)))

-3584 6309888)))

-3584 6309888)))

(dot (pt -11888640 2688000))))

(pt -11891200 2688640)))

(pt -11889920 2688640)))

(pt -11889920 2687360)))

(pt -11888640 2688000)))

(pt -11888640 2688000)))

(dot (pt -11888640 2706432))))

(pt -11891200 2707072)))

4 ~-- APPENDIX E

(figure bus_loort_l ayer

(path (pointList (pt -11891200 2707072) (pt -11889920 2707072)))
)

(figure bus_.port_layer

(path (pointList (pt -11891200 2705792) (pt -11889920 2705792)))
)

(figure bus__port_layer

(path (pointList (pt -11889920 2705792) (pt -11888640 2706432)))
)

(figure bus__port_layer

(path (pointList (pt -11889920 2707072) (pt -11888640 2706432)))
)

)

(instance Ripper_l

(vi ewRef Schema ti c_represen ta ti on

(cel iRef ripper (libraryRef generl c_sdb))
)

(transform (orientation RI80) (origin (pt -16384 5926912)))
)

(instance Ripper_2

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generlc_sdb))
)

(transform (orientation RI80) (origin (pt -16384 5939200)))
)

(instance Ripper_3

(vi ewRef Schema ti c_represen ta ti on

(cel iRef ripper (i ibraryRef generl c_sdb))
)

(transform (orientation RI80) (origin (pt -16384 5951488)))
)

(instance Ripper_4

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generlc_sdb))
)

(transform (orientation a180) (origin (pt -16384 5963776)))
)

(instance Ripper_5

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generlc_sdb))
)

(transform (orientation RI80) (origin (pt -16384 5976064)))

)

(instance Ripper_6

(vi ewRef Schema ti c_represen ta ti on

(cel IRef ripper (i ibraryRef generl c_sdb))

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) 3 4 3

)

(transform (orientation RI80) (origin (pt -16384 5988352)))
)

(instance Ripper_7

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generlc_sdb))

)

(transform (orientation RI80) (origin (pt -16384 6000640)))

)

(instance Ripper_8

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generlc_sdb))
)

(transform (orientation RI80) (origin (pt -16384 6012928)))

)

(ins tance Ripper_9

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generlc_sdb))
)

(transform (orientation RI80) (origin (pt -16384 6025216)))

)

(instance Ripper_l 0

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generlc_sdb))

)

(transform (orientation RI80) (origin (pt -16384 6037504)))

)

(instance Ripper_ll

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generlc_sdb))
)

(transform (orientation RI80) (origin (pt -16384 6049792)))
)

(instance Ripper_12

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generlc_sdb))

)

(transform (orientation RI80) (origin (pt -16384 6062080)))

)

(instance Ripper_13

(vi ewRef Schema ti c_represen ta ti on

(cellRef ripper (libraryRef generic_sdb))

)

(net (rename DUT_execute_net15859 "DUT_execute/net15859")

3 4 4 APPENDIX E

(joined (portRef A (instanceRef DUT_execute_U788))

(portRef QN (instanceRef microc_ent_REG956_Sl 0))

)

(figure net_layer

(path (pointList (pt -11825152 2284544)

(path (pointList (pt -11462656 2284544)

(path (pointList (pt -11462656 2702336)

)

)

(net (rename DUT_register_file_n5676 "DUT_register_file/n5676")

(joined (portRef TE (instanceRef microc_ent_REG883_Sll))

(portRef TE (instanceRef microc_ent_REG94 6_SI i))

(portRef TE (instanceRef microc_ent_REG944_Sll))

(portRef TE (instanceRef microc_ent_REG942_Sll))

(portRef QN (instanceRef microc_ent_REGlS__S9))

(portRef TE (instanceRef microc_ent_REG940_Sll))

(portRef B (instanceRef DUT_register_file_U3936))

(portRef B (instanceRef DUT_register_file_U2596))

(portRef TE (instanceRef mlcroc_ent_REG954_Sll))

(portRef TE (instanceRef

(portRef TE (instanceRef

(portRef TE (instanceRef

(portRef TE (instanceRef

(portRef TE (instanceRef

(portRef TE (instanceRef

(pt -11462656 2284544)))

(pt -11462656 2702336)))

(pt -11444224 2702336)))

ml croc_en t_REG952_SI 1))

ml croc_en t_REG950_SI 1))

ml croc_en t_REG931_SI 1))

ml croc_en t_REG948_SI 1))

ml croc_en t_REG93 7_SI 1))

ml croc_en t_REG934_SI 1))

(portRef TE (instanceRef mlcroc_ent_REG929__Sll))

(portRef B (instanceRef DUT_register_file_U2621))

)

(figure net_layer

(path

(pointList (pt -11833344 4096) (pt -i1795456 4096)

(pt -11773952 4096) (pt -11649024 4096) (pt -11619328 4096)

(pt -11425792 4096) (pt -11410432 4096) (pt -8192 4096)

)

)

(path (pointList (pt -8192 4096) (pt -8192 2643968)))

(path (pointList (pt -10240 2643968) (pt -8192 2643968)))

(path (pointList (pt -11410432 4096) (pt -11410432 2539520)))

(path (pointList (pt -11410432 2539520) (pt -11409408 2539520)))

(path (pointList (pt -11425792 4096) (pt -11425792 2540544)))

(path (pointList (pt -11425792 2540544) (pt -11424768 2540544)))

(path

(pointList (pt -11619328 4096) (pt -11619328 2624512)

(pt -11619328 2642944) (pt -11619328 2661376) (pt -11619328 2679808)

(pt -11619328 2698240)

)

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) ~ 4 5

)

(path (pointList (pt -11619328 2698240) (pt -11612160 2698240)))

(path (pointList (pt -11619328 2624512) (pt -11612160 2624512)))

(path (pointList (pt -11619328 2679808) (pt -11612160 2679808)))

(path (pointList (pt -11619328 2661376) (pt -11612160 2661376)))

(path (pointList (pt -11619328 2642944) (pt -11612160 2642944)))

(path

(pointList (pt -11649024 4096) (pt -11649024 2318336)

(pt -11649024 2572288) (pt -11649024 2598912) (pt -11649024 2611200)
)

)

(path (pointList (pt -11649024 2572288) (pt -11642880 2572288)))

(path (pointList (pt -11649024 2611200) (pt -11642880 2611200)))

(path (pointList (pt -11649024 2598912) (pt -11642880 2598912)))

(path (pointList (pt -11649024 2318336) (pt -11642880 2318336)))

(pa th

(pointList (pt -i1773952 4096) (pt -i1773952 2272256)

(pt -i1773952 2499584)

)

)

(path (pointList (pt -i1773952 249.9584) (pt -i1771904 2499584)))

(path (pointList (pt -i1773952 2272256) (pt -i1771904 2272256)))

(pa th

(pointList (pt -11795456 4096) (pt -11795456 2342912)

(pt -i1795456 2435072)

)

)

(path (pointList (pt -I1795456 2435072) (pt -i1793408 2435072)))

(path (pointList (pt -11795456 2342912) (pt -11793408 2342912)))

(path (pointList (pt -11833344 4096) (pt -11833344 2298880)))

(path (pointList (pt -11833344 2298880) (pt -11832320 2298880)))
)

)

(net n184

(joined (portRef B (instanceRef DUT_decode_U43))

(portRef B (instanceRef DUT_decode_U40))

(portRef A (instanceRef DUT_decode_U42))

(portRef C (instanceRef DUT_decode_U28))

(portRef Q (instanceRef microc_ent_REGO_Sl))

)

(figure net layer

(path

(pointList (pt -11835392 2185216) (pt -11703296 2185216)

(pt -11672576 2185216) (pt -11209728 2185216)
)

3 4 6 A P P E N D I X E

(path (pointList (pt-11209728 2185216)

(path (pointList (pt-11209728 2700288)

(path (pointList (pt-11672576 2185216)

(path (pointList (pt-11672576 2593792)

(path (pointList (pt-11703296 2185216)

(path (pointList (pt -11703296 2583552)

(path

(pointList (pt -11835392 2185216)

(pt -11835392 2329600)
)

)

(path (pointList (pt -11847680 2319360)

(path (pointList (pt -11835392 2329600)
)

)

(net (rename DUT_predecode_net20 "DUT__predecode/net20")

(joined (portRef QN (instanceRef microc_ent_REG928_S10))

(portRef B (instanceRef DUT_predecode_U41))
)

(figure net_layer

(path (pointList (pt-11836416 2274304)

(path (pointList (pt-11802624 2274304)

(path (pointList (pt -11808768 2341888)

(path (pointList (pt-11836416 2274304)

(path (pointList (pt -11836416 2349056)
)

)

(net (rename DUT_predecode_net21 "DUT_predecode/net21 ")

(joined (portaef QN (instanceRef microc_ent_REG930_SlO))

(portRef B (instanceRef DUT__predecode_U40))
)

(figure net_layer

(path (pointList (pt-11838464 2273280)

(path (pointList (pt-11801600 2273280)

(path (pointList (pt-11808768 2434048)

(path (pointList (pt -11838464 2273280)

(path (pointList (pt-11838464 2441216)
)

)

(net (rename destination 3 "destination[3] ")

(joined (portRef A (instanceRef DUT_predecode_U56))

(portRef TI (instanceRef microc_ent_REG937_Sll))

(portRef (member w O) (instanceRef Ripper_68))
)

(figure net_layer

(pt -11209728 2700288)))

(pt -11206656 2700288)))

(pt -11672576 2593792)))

(pt -11669504 2593792)))

(pt -i1703296 2583552)))

(pt -11695104 2583552)))

(pt -11835392 2319360)

(pt -11835392 2319360)))

(pt -11832320 2329600)))

(pt -11802624 2274304)))

(pt -11802624 2341888)))

(pt -11802624 2341888)))

(pt -11836416 2349056)))

(pt -11832320 2349056)))

(pt -11801600 2273280)))

(pt -11801600 2434048)))

(pt -11801600 2434048)))

(pt -11838464 2441216)))

(pt -11832320 2441216)))

(path (pointList (pt -11840512 2267136) (pt -I1774976 2267136)))

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) ~ 4 7

(path (pointList (pt -11774976 2267136) (pt -11774976 2501632)))

(path (pointList (pt -11774976 2501632) (pt -11771904 2501632)))

(path (pointList (pt -11840512 2267136) (pt -11840512 2507776)))

(path

(pointList (pt -11852800 2507776) (pt -11840512 2507776)

(pt -11840512 2507776) (pt -11832320 2507776)
)

)

(net n183

(joined (portRef TI (instanceRef microc_ent_REG883_Sll))

(portRef B (instanceRef DUT_decode_U42))

(portRef B (instanceRef DUT_decode_U28))

(portRef Q (instanceRef microc_ent_REG840_S10))

(portRef A (instanceRef DUT_decode_U43))

(portRef A (instanceRef DUT_decode_U40))
)

(figure net_layer

(path

(pointList (pt -11841536 2184192) (pt -11704320 2184192)

(pt -11671552 2184192) (pt -11210752 2184192)
)

)

(path (pointList (pt -11210752 2184192) (pt -11210752 2702336)))

(path (pointList (pt -11210752 2702336) (pt -11206656 2702336)))

(path (pointList (pt -11671552 2184192) (pt -11671552 2591744)))

(path (pointList (pt -11671552 2591744) (pt -11669504 2591744)))

(path (pointList (pt -11704320 2184192) (pt -11704320 2585600)))

(path (pointList (pt -i1704320 2585600) (pt -i1701248 2585600)))

(path

(pointList (pt -11841536 2184192) (pt -11841536 2300928)

(pt -11841536 2331648)
)

)

(path

(pointList (pt -11847680 2331648) (pt -11841536 2331648)

(pt -11841536 2331648) (pt -11832320 2331648)

)

)

(path (pointList (pt -11841536 2300928) (pt -11832320 2300928)))
)

)

(net (rename destination 2 "destination[2]")

(joined (portRef TI (instanceRef microc_ent_REG934_Sll))

(portRef A (instanceRef DUT__predecode_U55))

3 4 8 APPENDIX E

(portRef (member w i) (instanceRef Ripper_67))
)

(figure net_layer

(path (pointList (pt-11842560 2266112)

(path (pointList (pt-11772928 2266112)

(path (pointList (pt-11772928 2274304)

(path (pointList (pt-11842560 2266112)

(path

(pointList (pt -11852800 2280448) (pt -11842560 2280448)

(pt -11842560 2280448) (pt -11832320 2280448)
)

)

)

)

(net (rename DUT_decode_n7351 "DUT_decode/n7351 ")

(joined (portRef A (instanceRef DUT_decode_U29))

(portRef B (instanceRef U243))

(portRef B (instanceRef DUT_decode_U46))

(portRef QN (instanceRef microc_ent_REG957_SlO))
)

(figure net_layer

(path

(pointList (pt -11854848 2232320) (pt -11817984 2232320)

(pt -11646976 2232320)
)

)

(path (pointList (pt -11646976 2232320)

(path (pointList (pt -11646976 2590720)

(path (pointList (pt-11817984 2232320)

(path (pointList (pt -11817984 2332672)

(pa th

(pointList (pt -11854848 2232320)

(pt -11854848 2291712)
)

)

(pt -i1772928 2266112)))

(pt -11772928 2274304)))

(pt -11771904 2274304)))

(pt -11842560 2280448)))

(path (pointList (pt-11866112 2281472)

(path (pointList (pt-11854848 2291712)

(pt -11646976 2590720)))

(pt -11642880 2590720)))

(pt -11817984 2332672)))

(pt -11815936 2332672)))

(lOt -11854848 2281472)

(pt -11854848 2281472)))

(pt -11853824 2291712)))

(net (rename destination 1 "destination[l]")

(joined (portRef TI (instanceRef microc_ent_REG931_Sll))

(portRef A (instanceRef DUT_loredecode_U54))

(portRef (member w 2) (instanceRef Ripper_66))
)

(figure net_layer

(path (pointList (pt -11858944 2272256) (pt -I1796480 2272256)))

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) ~ 4

(path (pointList (pt -11796480 2272256) (pt -11796480 2437120)))

(path (pointList (pt -11796480 2437120) (pt -11793408 2437120)))

(path (pointList (pt -11858944 2272256) (pt -11858944 2443264)))

(path

(pointList (pt -11872256 2443264) (lOt -11858944 2443264)

(pt -11858944 2443264) (pt -11853824 2443264)

)

)

)

(net (rename destination 0 "destination [0] ")

(joined (portRef A (instanceRef DUT__predecode_U53))

(portRef TI (instanceRef microc_ent_REG929_Sll))

(portRef (member w 3) (instanceRef Ripper_65))

)

(figure net_layer

(path (pointList (pt -11859968 2270208) (pt -11794432 2270208)))

(path (pointList (pt -i1794432 2270208) (pt -i1794432 2344960)))

(path (pointList (pt -i1794432 2344960) (pt -i1793408 2344960)))

(path (pointList (pt -11859968 2270208) (pt -11859968 2351104)))

(path

(pointList (pt -11872256 2351104) (pt -11859968 2351104)

(pt -11859968 2351104) (pt -11853824 2351104)
)

)

)

)

(net (rename sig_command 0 "sig_command[O] ")

(joined (portRef D (instanceRef microc_ent_REG840_S10))

(portRef B (instanceRef DUT_predecode_U27))

(portRef Z (instanceRef DUT_predecode_U26))
)

(figure net_layer

(path (pointList (pt -11857920 2549760) (pt -11494400 2549760)))

(path (pointList (pt -11857920 2331648) (pt -11857920 2549760)))

(pa th

(pointList (pt -11867136 2331648) (pt -11857920 2331648)

(pt -11857920 2331648) (pt -11853824 2331648)

)

)

)

)

(net (rename sig_command 2 "sig_command[2] ")

(joined (portRef D (instanceRef microc_ent_REGO_Sl))

(portRef A (instanceRef DUT predecode_U27))

(portRef Z (instanceRef DUT_predecode_U25))

3 5 0 APPENDIX E

)

(figure net_layer

(path (pointList (pt -11856896 2551808) (pt -11494400 2551808)))

(path (pointList (lOt -11856896 2319360) (pt -11856896 2551808)))

(path

(pointList (lOt -11867136 2319360) (lOt -11856896 2319360)

(lOt -11856896 2319360) (pt -11853824 2319360)
)

)

(net n536

(joined (portRef A (instanceRef U243))

(portRef Z (instanceRef U245))
)

(figure net_layer

(path (pointList (pt -11860992 2278400)

(path (pointList (pt -11834368 2278400)

(path (pointList (pt -11834368 2313216)

(path (pointList (pt -11860992 2278400)

(path

(portRef A (instanceRef U244))

(lOt -11834368 2278400)))

(10t -11834368 2313216)))

(pt -11832320 2313216)))

(pt -11860992 2293760)))

(pointList (pt -11869184 2293760) (pt -11860992 2293760)

(pt -11860992 2293760) (pt -11853824 2293760)
)

(net n438

(joined (portRef B (instanceRef DUT_decode_U41))

(portRef A (instanceRef DUT_decode_U28))

(portRef Q (instanceRef microc_ent_REG957_SlO))
)

(figure net_layer

(path

(pointList (lot -11862016 2183168)

(pt -11211776 2183168)
)

)

(path (pointList (lOt -11211776 2183168)

(path (pointList (pt-11211776 2705408)

(path (pointList (pt-11705344 2183168)

(path (pointList (pt -11705344 2587648)

(path (pointList (pt -11862016 2183168)

(path (pointList (lOt-11867136 2289664)
)

(pt -11705344 2183168)

(pt -11211776 2705408)))

(pt -11206656 2705408)))

(pt -i1705344 2587648)))

(iOt -i1701248 2587648)))

(pt -11862016 2289664)))

(pt -11862016 2289664)))

(s FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) ~ 5 J

(net (rename inst 1 "inst[l]")

(joined (portRef A (instanceRef DUT_predecode_U42))

(portRef TE (instanceRef microc_ent_REG957_SlO))

(portRef (member w i) (instanceRef Ripper_70))
)

(figure net_layer

(path (pointList (pt -11876352 2182144) (pt -11213824 2182144)))

(path (pointList (pt -11213824 2182144) (pt -11213824 2713600)))

(path (pointList (pt -11213824 2713600) (pt -11206656 2713600)))

(path (pointList (pt -11876352 2182144) (pt -11876352 2281472)))

(path

(pointList (pt -11880448 2281472) (pt -11876352 2281472)

(pt -11876352 2281472) (pt -11873280 2281472)
)

)

)

)

(net jump

(joined (portRef jump) (portRef S (instanceRef DUT_predecode_U31))

(portRef A (instanceRef DUT_decode_U44))

(portRef S (instanceRef DUT_predecode_U32))

(portRef S (instanceRef DUT_predecode_U39))

(portRef A (instanceRef DUT_decode_U41))

(portRef Q (instanceRef microc_ent_REGl8_S9))

(portRef S (instanceRef DUT_predecode_U38))

(portRef S (instanceRef DUT_predecode_U36))

(portRef S (instanceRef DUT_predecode_U40))

(portRef S (instanceRef DUT_predecode_U33))

(portRef D (instanceRef microc_ent_REG957_SlO))

(portRef A (instanceRef DUT_predecode_U44))

(portRef S (instanceRef DUT_predecode_U35))

(portRef S (instanceRef DUT_predecode_U30))

(portRef B (instanceRef DUT_predecode_U42))

(portRef S (instanceRef DUT_predecode_U41))

(portRef S (instanceRef DUT__predecode_U37))

(portRef S (instanceRef DUT_loredecode_U34))

(portRef A (instanceRef U245))

(figure net_layer

(path

(pointList (pt -11882496 3072) (pt -11874304 3072)

(pt -11837440 3072) (pt -11819008 3072) (pt -11707392 3072)

(pt -11677696 3072) (pt -11212800 3072) (pt -7168 3072)
)

)

(path (pointList (pt -7168 3072) (pt -7168 2652160)))

~ 2 APPENDIX E

(pa th

(pointList (pt-11264 2652160) (pt -7168 2652160) (pt -7168 2652160)

(pt -6144 2652160)

)

)

(path

(pointList (pt -11212800 3072) (pt -11212800 2707456)

(pt -11212800 2711552)

)

)

(path (pointList (pt -11212800 2711552) (pt -11206656 2711552)))

(path (pointList (pt -11212800 2707456) (pt -11206656 2707456)))

(path

(pointList (pt -11677696 3072) (pt -11677696 2628608)

(lot -11677696 2647040) (pt -11677696 2665472) (pt -11677696 2683904)

(pt -11677696 2702336)
)

)

(path (pointList (pt -11677696 2647040) (pt -11668480 2647040)))

(path (pointList (pt -11668480 2647040) (lOt -11668480 2648064)))

(path (pointList (pt -11677696 2665472) (pt -11668480 2665472)))

(path (pointList (pt -11668480 2665472) (pt -11668480 2666496)))

(path (pointList (pt -11677696 2683904) (pt -11668480 2683904)))

(path (pointList (pt -11668480 2683904) (pt -11668480 2684928)))

(path (pointList (pt -11677696 2628608) (lOt -11668480 2628608)))

(path (pointList (pt -11668480 2628608) (pt -11668480 2629632)))

(path (pointList (pt -11677696 2702336) (pt -11668480 2702336)))

(path (pointList (pt -11668480 2702336) (pt -11668480 2703360)))

(path

(pointList (pt -11707392 3072) (pt -11707392 2576384)

(pt -11707392 2603008) (lOt -11707392 2615296)
)

)

(path (pointList (pt -11707392 2603008) (lOt -11700224 2603008)))

(path (pointList (pt -i1700224 2603008) (pt -i1700224 2604032)))

(path (pointList (pt -11707392 2615296) (pt -11700224 2615296)))

(path (pointList (pt -11700224 2615296) (.LOt -11700224 2616320)))

(path (pointList (pt -11707392 2576384) (pt -11700224 2576384)))

(path (pointList (pt -i1700224 2576384) (lOt -i1700224 2577408)))

(path

(pointList (pt -11819008 3072) (pt -11819008 2276352)

(pt -11819008 2337792) (pt -11819008 2503680)

)

)

(path (pointList (pt -11819008 2337792) (lOt -11815936 2337792)))

(path (pointList (pt -11819008 2276352) (pt -11814912 2276352)))

(EDIF FILE OF SYNTHESIZED MICROCONTROLLER EXAMPLE FROM CHAPTER 6) ~ ~

(path (pointList (pt -11814912 2276352)

(path (pointList (pt -11819008 2503680)

(path (pointList (pt -11814912 2503680)

(path

(pointList (pt -11837440 3072)

(pt -11837440 2439168)

)

)

(path (pointList (pt -11837440 2347008)

(path (pointList (pt -11831296 2347008)

(path (pointList (pt -11837440 2439168)

(path (pointList (pt -11831296 2439168)

(path

(pt -11814912 2277376)))

(pt -11814912 2503680)))

(pt -11814912 2504704)))

(pt -11837440 2347008)

(pt -11831296 2347008)))

(pt -11831296 2348032)))

(pt -11831296 2439168)))

(pt -11831296 2440192)))

(pointList (pt -11874304 3072) (pt -11874304 2289664)

(pt -11874304 2293760)

)

)

(path (pointList (pt -11874304 2293760) (pt -11873280 2293760)))

(path (pointList (pt -11874304 2289664) (pt -11873280 2289664)))

(path (pointList (pt -11882496 3072) (pt -11882496 2314240)))

(path (pointList (pt -11882496 2314240) (pt -11881472 2314240)))

)

)

(net (rename inst 0 "inst[O]")

(joined (portRef A (instanceRef DUT_predecode_U28))

(portRef B (instanceRef DUT_predecode_U43))

(portRef (member w 2) (instanceRef Ripper_69))

)

(figure net_layer

(path (pointList (pt -11883520 2181120) (pt -11214848 2181120)))

(path (pointList (pt -11214848 2181120) (pt -11214848 2717696)))

(path (pointList (pt -11214848 2717696) (pt -11206656 2717696)))

(path (pointList (pt -11883520 2181120) (pt -11883520 2332672)))

(path

(pointList (pt -11885568 2332672) (pt -11883520 2332672)

(pt -11883520 2332672) (pt -11881472 2332672)

)

)

)

)

(net (rename inst 2 "inst[2]")

(joined (portRef A (instanceRef DUT_predecode_U29))

(portRef A (instanceRef DUT_predecode_U43))

(portRef (member w 0) (instanceRef Ripper_71))
)

(figure net_layer

3 S 4 APPENDIX E

)

)

)

)

)

)

(path (pointList (pt -11884544 2180096) (pt -11215872 2180096)))

(path (pointList (pt -11215872 2180096) (pt -11215872 2719744)))

(path (pointList (pt -11215872 2719744) (pt -11206656 2719744)))

(path (pointList (pt -11884544 2180096) (pt -11884544 2320384)))

(path

(pointList (pt -11885568 2320384) (pt -11884544 2320384)

(pt -11884544 2320384) (pt -11881472 2320384)
)

)

(design Synopsys_edif (cellRef microc_ent (libraryRef DESIGNS))))

APPENDIX F
(SDF FILE FROM SYNTHESIZED
MICROCONTROLLER EXAMPLE

OF CHAPTER 6)

A sample of the SDF file obtained from the synthesized microcontroller example of
Chapter 6.

(DELAYFILE

(SDFVERSION "OVI 1.0 ")

(DESIGN "mi croc_en t ")

(DATE "Thu Apr 8 20:06:25 1999")

(VENDOR "cl ass ")

(PROGRAM "Synopsys Design Compiler cmos")

(VERSION "1998.02-i ")

(DIVIDER /)

(VOLTAGE 5.00:5.00:5.00)

(PROCESS)

(TEMPERATURE 25.00 : 25.00 : 25.00)

(TIMESCALE ins)

(CELL

(CELLTYPE "IVI ")

(INSTANCE DUT predecode \/U56)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELLTYPE "IVI ")

(INSTANCE DUT_predecode \/U55)

355

3 ~ 6 APPENDIX F

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELLTYPE "IVI ")

(INSTANCE DUT_loredecode \/U54)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))
)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_predecode \/U53)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_loredecode \/U52)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_predecode \/U51)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_predecode \/U50)

(DELAY

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) :3 ~

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELLTYPE "IVI ")

(INSTANCE DUT_predecode \/U49)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELLTYPE "IVI ")

(INSTANCE DUT_predecode \/U48)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_predecode \/U47)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_predecode \/U46)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

)

)

(CELL

(CELLTYPE "IVI ")

(INSTANCE DUT_predecode \/U45)

(DELAY

(ABSOLUTE

3 5 8 APPENDIX F

(IOPATH A Z (0.307:0.307:0.307) (0.200:0.200:0.200))

)

(CELL

(CELLTYPE "IVI ")

(INSTANCE DUT_predecode \/U44)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.331:0.331:0.331) (0.228:0.228:0.228))

)

)

(CELL

(CELL TYPE "AN21 ")

(INSTANCE DUT_predecode \/U43)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.362:0.362:0.362) (0.617:0.617:0.617))

(IOPATH B Z (0.362:0.362:0.362) (0.617:0.617:0.617))

)

)

(CELL

(CELLTYPE "NR2I ")

(INSTANCE DUT_predecode \/U42)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.646:0.646:0.646) (0.222:0.222:0.222))

(IOPATH B Z (0.646:0.646:0.646) (0.222:0.222:0.222))

)

)

(CELL

(CELLTYPE "MUX21L ")

(INSTANCE DUT_predecode \/U41)

(DELAY

(ABSOLUTE

(IOPATH A Z (0. 481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH B Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH S Z (0.881:0.881:0.881) (0.667:0.667:0.667))

)

)

)

(CELL

(CELLTYPE "MUX2 IL ")

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) 3 ~ 9

(INSTANCE DUT_loredecode \/U40)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH B Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH S Z (0.881:0.881:0.881) (0.667:0.667:0.667))

)

)

)

(CELL

(CELLTYPE "MUX21L ")

(INSTANCE DUT_loredecode \/U39)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH B Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH S Z (0.881:0.881:0.881) (0.667:0.667:0.667))

)

)

)

(CELL

(CELL TYPE "MUX21L ")

(INSTANCE DUT_predecode \/U38)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH B Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH S Z (0.881:0.881:0.881) (0.667:0.667:0.667))
)

)

)

(CELL

(CELL TYPE "MUX21L ")

(INSTANCE DUT_loredecode \/U3 7)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH B Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH S Z (0.881:0.881:0.881) (0.667:0.667:0.667))

)

)

)

(CELL

(CELL TYPE "MUX2 IL ")

(INSTANCE DUT_loredecode \/U3 6)

(DELAY

~ 6 0 APPENDIX F

(ABSOLUTE

(IOPATH A Z (0. 481:0.481:0.481) (0. 467: 0. 467: 0. 467))

(IOPATH B Z (0. 481:0.481:0.481) (0. 467: 0. 467: 0. 467))

(IOPATH S Z (0.881:0.881:0.881) (0.667:0.667:0.667))

)

)

)

(CELL

(CELLTYPE "MUX21 L ")

(INSTANCE DUT__predecode \/U35)

(DELAY

(ABSOL UTE

(IOPATH A Z (0. 481:0.481:0.481) (0. 467: 0. 467:0.467))

(IOPATH B Z (0. 481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH S Z (0. 881:0.881:0.881) (0. 667: 0. 667: 0. 667))

)

)

)

(CELL

(CELLTYPE "MUX21L ")

(INSTANCE DUT_predecode \/U34)

(DELAY

(ABSOLUTE

(IOPATH A Z (0. 481:0.481:0.481) (0. 467: 0. 467: 0. 467))

(IOPATH B Z (0. 481:0.481:0.481) (0. 467: 0. 467: 0. 467))

(IOPATH S Z (0. 881:0..881:0.881) (0. 667: 0. 667: 0. 667))

)

(CELL

(CELLTYPE "MUX21 L ")

(INSTANCE DUT_predecode \/U33)

(DELAY

(ABSOLUTE

(IOPATH A Z (0. 481:0.481:0.481) (0. 467: 0. 467: 0. 467))

(IOPATH B Z (0. 481:0.481:0.481) (0. 467: 0. 467: 0. 467))

(IOPATH S Z (0. 881:0.881:0.881) (0. 667: 0. 667: 0. 667))

)

)

(CELL

(CELL TYPE "MUX21L ")

(INSTANCE DUT_prede c ode \ / U32)

(DELAY

(ABSOLUTE

(IOPATH A Z (0. 481:0.481:0.481) (0. 467: 0. 467: 0. 467))

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) ~ 6 II

(IOPATH B Z (0.481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH S Z (0. 881:0.881:0.881) (0. 667: 0. 667:0.667))

)

)

)

(CELL

(CELLTYPE "MUX2 IL ")

(INSTANCE DUT_predecode \/U31)

(DELAY

(ABSOL UTE

(IOPATH A Z (0. 481:0.481:0.481) (0. 467: 0. 467:0.467))

(IOPATH B Z (0. 481:0.481:0.481) (0. 467:0.467:0.467))

(IOPATH S Z (0. 881:0.881:0.881) (0. 667: 0. 667:0.667))

)

)

)

(CELL

(CELLTYPE "MUX21L ")

(INSTANCE DUT_predecode \/U30)

(DELAY

(ABSOL UTE

(IOPATH A Z (0. 481:0.481:0.481) (0. 467: 0. 467:0.467))

(IOPATH B Z (0. 481:0.481:0.481) (0.467:0.467:0.467))

(IOPATH S Z (0. 881:0.881:0.881) (0.667:0.667:0.667))

)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_predecode \/U29)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.262:0.262:0.262) (0.147:0.147:0.147))

)

)

)

(CELL

(CELLTYPE "IVI ")

(INSTANCE DUT_predecode \/U28)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.262:0.262:0.262) (0.147:0.147:0.147))

)

)

)

(CELL

3 6 ~ APPENDIX F

(CELLTYPE "ND2I ")

(INSTANCE DUT_loredecode \ / U2 7)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

)

(CELL

(CELLTYPE "ND21 ")

(INSTANCE DUT_lorede code \ / U2 6)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.328:0.328:0.328) (0.253:0.253:0.253))

(IOPATH B Z (0.328:0.328:0.328) (0.253:0.253:0.253))

)

)

)

(CELL

(CELL TYPE "ND21 ")

(INSTANCE DUT__prede c ode \ / U25)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.328:0.328:0.328) (0.253:0.253:0.253))

(IOPATH B Z (0.328:0.328:0.328) (0.253:0.253:0.253))
)

)

)

(CELL

(CELL TYPE "ND21 ")

(INSTANCE DUT_loredecode \ / U24)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_lorede code \ / U21)

(DELAY

(ABSOLUTE

(IOPATH A Z (2.387:2.387:2.387) (2.655:2.655:2.655))

)

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 8) 3 ~ 3

)

)

(CELL

(CELLTYPE "ND21 ")

(INSTANCE DUT_decode \/U4 6)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_decode \/U45)

(DELAY

(ABSOL UTE

(IOPATH A Z (0.537:0.537:0.537) (0.471:0.471:0.471))

)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_decode \/U44)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.331:0.331:0.331) (0.228:0.228:0.228))

)

)

)

(CELL

(CELLTYPE "ND21 ")

(INSTANCE DUT_decode \/U43)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

)

(CELL

(CELLTYPE "NR2I ")

(INSTANCE DUT_decode \/U42)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.646:0.646:0.646) (0.222:0.222:0.222))

3 6 4 APPENDIX F

(IOPATH B Z (0.646:0.646:0.646) (0.222:0.222:0.222))
)

)

)

(CELL

(CELLTYPE "NR2I ")

(INSTANCE DUT_decode \/U41)

(DELAY �9

(ABSOLUTE

(IOPATH A Z (0.646:0.646:0.646) (0.222:0.222:0.222))

(IOPATH S Z (0.646:0.646:0.646) (0.222:0.222:0.222))

)

)

(CELL

(CELLTYPE "AN2I ")

(INSTANCE DUT_ decode \/U4 0)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.362:0.362:0.362) (0.617:0.617:0.617))

(IOPATH B Z (0.362:0.362:0.362) (0.617:0.617:0.617))

)

)

)

(CELL

(CELLTYPE "ND2 I ")

(INSTANCE DUT_ decode ~ /U3 9)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.445:0.445:0.445) (0.455:0.455:0.455))

(IOPATH S Z (0.445:0.445:0.445) (0.455:0.455:0.455))

)

)

)

(CELL

(CELLTYPE "ND2I ")

(INSTANCE DUT_ decode ~ /U38)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

)

(CELL

(CELLTYPE "ND2I ")

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) ~ 6 ~

(INSTANCE DUT_decode \/U3 7)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.445:0.445:0.445) (0.455:0.455:0.455))

(IOPATH B Z (0.445:0.445:0.445)(0.455:0.455:0.455))
)

)

)

(CELL

(CELLTYPE "ND2I ")

(INSTANCE DUT_ decode \/U34)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH S Z (0.270:0.270:0.270) (0.152:0.152:0.152))
)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_decode \/U31)

(DELAY

(ABSOLUTE

(IOPATH A Z (2.387:2.387:2.387) (2.655:2.655:2.655))
)

)

)

(CELL

(CELL TYPE "IVI ")

(INSTANCE DUT_decode \/U3 O)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.262:0.262:0.262) (0.147:0.147:0.147))
)

)

)

(CELL

(CELL TYPE "OR2I ")

(INSTANCE DUT_ decode \/U29)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.595:0.595:0.595) (0.665:0.665:0.665))

(IOPATH B Z (0.595:0.595:0.595) (0.665:0.665:0.665))
)

)

3 6 6 APPENDIX F

(CELL

(CELLTYPE "A07 ")

(INSTANCE DUT_ decode \/U2 8)

(DELAY

(ABSOLUTE

(IOPATH A Z (1.006:1.006:1.006) (0.523:0.523:0.523))

(IOPATH B Z (1.006:1.006:1.006) (0.523:0.523:0.523))

(IOPATH C Z (1.006:1.006:1.006) (0.523:0.523:0.523))

)

)

)

(CELL

(CELL TYPE "ND21 ")

(INSTANCE DUT_regi s t er_f i l e \/U5600)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

(CELL

(CELLTYPE "ND2I ")

(INSTANCE DUT_regi s t er_ f i I e \/U5599)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

(CELL

(CELLTYPE "ND2I ")

(INSTANCE DUT_register_f il e \/U5598)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

)

(CELL

(CELLTYPE "ND2I ")

(INSTANCE DUT_register_f ile \/U559 7)

(DELAY

(ABSOLUTE

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) 3 ~ ' 7

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

)

(CELL

(CELL TYPE "ND21 ")

(INSTANCE DUT_register_file \/U5596)

(DELAY

(ABSOLUTE

(IOPATH A Z (0.270:0.270:0.270) (0.152:0.152:0.152))

(IOPATH B Z (0.270:0.270:0.270) (0.152:0.152:0.152))

)

)

...............

...............

(CELL

(CELLTYPE "FDIS ")

(INSTANCE mi croc_ en t_REG3 3_SI 7)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELL TYPE "FDI S")

(INSTANCE mi croc_en t_REG2 9_SI 6)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

3 6 8 APPENDIX F

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

(CELL

(CELLTYPE "FDIS ")

(INSTANCE micro c_ en t_REG2 5-- Sl 5)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))
)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELL TYPE " FDI S ")

(INSTANCE mi croc_en t_REG 7 5 5_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))
)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1. 300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELLTYPE "FDIS ")

(INSTANCE mi croc_ en t_REGI 5_S8)

(DELAY

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) ~ ~

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (i. 300:1. 300:1. 300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELL TYPE "FDI S ")

(INSTANCE mi croc_en t_REGI i_S7)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELL TYPE "FDI S ")

(INSTANCE mi croc_en t_REG8_S6)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

3 7 0 A P P E N D I X F

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELL TYPE "FDI S")

(INSTANCE mi croc_en t_REG164_SI 6)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

(CELL

(CELL TYPE "FDI S")

(INSTANCE mi croc_en t_REG4_S5)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (i. 300:1. 300:1.300))

(HOLD D (posedge CP) (0. 300: O. 300: O. 300))

(SETUP TI (posedge CP) (i. 300:1. 300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1. 300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

(CELL

(CELL TYPE "FDI S ")

(INSTANCE mi croc_en t_REG7 0 9_SI 4)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) ~ '7 |

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELLTYPE "FDIS ")

(INSTANCE mi croc_en t_REG18 5_SI 5)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELL TYPE "FDI S ")

(INSTANCE mi croc_en t_REG2 0 5_SI 5)

(DELAY

(ABSOL UTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

3 7 2 APPENDIX F

)

)

(CELL

(CELL TYPE "FDI S ")

(INSTANCE mi croc_en t_REG2 2 9_ SI 5)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))
)

(TIMINGCHECK

(SETUP D (posedge CP) (i. 300:1. 300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1. 300:1. 300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (I. 300:1. 300:1. 300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELLTYPE "FDIS")

(INSTANCE micro c_ en t_REG2 5 i_ S15)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))
)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1. 300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (I. 300:1. 300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1. 300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELL TYPE "FDI S ")

(INSTANCE mi croc_ en t_REG3 5 4_ SI 5)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))
)

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) ~ ~

)

(TIMINGCHECK

(SETUP D (posedge CP) (i. 300:1. 300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (i. 300:1.300:1. 300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (i. 300:1. 300:1. 300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

(CELL

(CELL TYPE "FDI S")

(INSTANCE mi croc_ en t_REG3 8 5_ SI 5)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))
)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0. 300: 0. 300: 0. 300))
)

)

(CELL

(CELLTYPE "FDIS")

(INSTANCE mi croc_en t_REG43 6_SI 5)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))
)

(TIMINGCHECK

(SETUP D (posedge CP) (i. 300:1. 300:1. 300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (i. 300:1. 300:1. 300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (I. 300:1. 300: i. 300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

3 7 4 A P P E N D I X F

(CELL

(CELL TYPE "FDI S ")

(INSTANCE mi croc_en t_REG4 8 8_SI 5)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELLTYPE "FDIS")

(INSTANCE mi croc_en t_REG5 0 8_SI 4)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

(TIMINGCHECK

(SETUP D (posedge CP) (i. 300:1. 300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1. 300:1. 300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1. 300:1. 300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELLTYPE "FDIS ")

(INSTANCE mi croc_en t_REG528_SI 4)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) ~ 7

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELLTYPE "FDI S")

(INSTANCE mi croc_en t_REG2 0_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.215:1.215:1.215) (1.415:1.415:1.415))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELLTYPE "FDIS")

(INSTANCE mi croc_en t_REG8 82_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.507:1.507:1.507) (1.520:1.520:1.520))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

)

(CELL

(CELLTYPE "FDIS ")

3 7 6 A P P E N D I X F

(INSTANCE mi croc_en t_REG881_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.507:1.507:1.507) (1.520:1.520:1.520))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

(CELL

(CELL TYPE "FDI S ")

(INSTANCE mi croc_en t_REG8 8 0_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.507:1.507:1.507) (1.520:1.520:1.520))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1. 300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

)

(CELL

(CELL TYPE "FDI S ")

(INSTANCE mi croc_en t_REG879_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.507:1.507:1.507) (1.520:1.520:1.520))

(IOPATH CP QN (1.590:1.590:1.590) (1.570:1.570:1.570))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) ~"7"I

(SETUP TI (posedge CP) (1.300:1.300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

(CELL

(CELLTYPE "FDI ")

(INSTANCE micro c_ en t_REG938_ S12)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (2. 007:2. 007:2. 007) (1.520:1.520:1.520))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG9 3 5_SI 2)

(DELAY

(ABSOL UTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (2. 007:2. 007:2. 007) (1.520:1.520:1.520))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

)

(CELL

(CELL TYPE "FDI ")

(INSTANCE mi croc_en t_REG932_SI 2)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090.1.090) (1.370:1.370:1.370))

(IOPATH CP QN (2.007:2.007:2.007) (1.520:1.520:1.520))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

7 ' ~ A P P E N D I X F

)

)

(CELL

(CELL TYPE "FDI ")

(INSTANCE mi croc_en t_REGI_S2)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1..090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (2.007:2.007:2.007) (1.520:1.520:1.520))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800:0. 800: O. 800))

(HOLD D (posedge CP) (0. 400: O. 400:0. 400))

)

(CELL

(CELL TYPE " FDI ")

(INSTANCE mi croc_en t_REG8 69_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800: O. 800: O. 800))

(HOLD D (posedge CP) (0. 400: 0. 400: O. 400))

)

(CELL

(CELL TYPE "FDI ")

(INSTANCE mi croc_en t_REG8 7 0_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0.800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

)

(CELL

(CELL TYPE " FDI ")

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) ~ ' I

(INSTANCE mi croc_en t_REG8 71_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0.800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG872_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG873_SI 1)

(DELAY

(ABSOL UTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG8 7 4_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

3 8 0 APPENDIX F

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0.800:0.800:0.800))

(HOLD D (posedge CP) (0. 400: 0. 400:0. 400))

)

(CELL

(CELL TYPE "FDI ")

(INSTANCE mi croc_en t_REG8 7 5_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0.800:0.800:0.800))

(HOLD D (posedge CP) (0. 400: O. 400:0. 400))

)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG8 7 6_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800:0. 800: 0. 800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG8 5 2_ SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SDF FILE FROM SYNTHESIZED MICROCONTROLLEP, EXAMPLE OF CHAPTER 6) ~8 1

(SETUP D (posedge CP) (0.800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG8 7 7_ Sl i)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0.800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))
)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG8 63_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))
)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800: 0. 800: O. 800))

(HOLD D (posedge CP) (0.400:0.400:0.400))
)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG8 6 4_ S I 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800: O. 800: 0. 800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

3 8 ~- APPENDIX F

(CELL

(CELL TYPE "FDI ")

(INSTANCE mi croc_en t_REG8 6 5_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800: O. 800: O. 800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

)

(CELL

(CELL TYPE "FDI ")

(INSTANCE mi croc_en t_REG8 6 6_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800: O. 800: 0. 800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

(CELL

(CELL TYPE " FDI ")

(INSTANCE mi croc_en t_REG8 6 7_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0.800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

)

(CELL

(CELL TYPE "FDI ")

(INSTANCE mi croc_en t_REG8 6 8_SI 1)

(DELAY

(SDF FILE FROM SYNTHESIZED MICROCONTROLLER EXAMPLE OF CHAPTER 6) ~

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG878_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800: 0. 800: 0. 800))

(HOLD D (posedge CP) (0. 400: 0. 400:0.400))

)

(CELL

(CELLTYPE "FDI ")

(INSTANCE mi croc_en t_REG956_SI 0)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.361:1.361:1.361) (1.467:1.467:1.467))

(IOPATH CP QN (1.861:1.861:1.861) (1.467:1.467:1.467))

)

)

(TIMINGCHECK

(SETUP D (posedge CP) (0. 800:0.800:0.800))

(HOLD D (posedge CP) (0.400:0.400:0.400))

)

)

(CELL

(CELLTYPE "FDIS ")

(INSTANCE mi croc_en t_REG883_SI 1)

(DELAY

(ABSOLUTE

(IOPATH CP Q (1.090:1.090:1.090) (1.370:1.370:1.370))

(IOPATH CP QN (2. 458:2. 458:2. 458) (1.881:1.881:1.881))

)

3 8 4 APPENDIX F

)

(TIMINGCHECK

(SETUP D (posedge CP) (1.300:1.300:1.300))

(HOLD D (posedge CP) (0.300:0.300:0.300))

(SETUP TI (posedge CP) (1.300:1. 300:1.300))

(HOLD TI (posedge CP) (0.300:0.300:0.300))

(SETUP TE (posedge CP) (1.300:1.300:1.300))

(HOLD TE (posedge CP) (0.300:0.300:0.300))

GLOSSARY

Architecture Portion of VHDL code
whereby the implementation of a design
is specified

ASIC Application Specific Integrated
Circuit

behavioral VI-IDL A form of VHDL that
is commonly used for simulation pur-
poses

BIT A signal or port type that can have
only values of 1 and 0

black box A design in which only the
interface characteristics of the design
are known; the internal circuitry is
unknown

Boolean A signal or port type that can
have only values of TRUE or FALSE

CAD Computer-Aided Design

chips Generic name for integrated cir-
cuits

component Logic block of a design

component inference A concept of infer-
ring a component during synthesis

configuration Portion of VHDL code
that declares usage of architecture for
multiarchitectural design; also used to

specify declaration of instantiated com-
ponents in the architecture portion

CONV INTEGER A function from IEEE
library

CONV_STD_LOGIC_VECTOR A func-
tion from IEEE library

descriptive VHDL A form of VHDL that
describes the functions of a logic block;
this form of VHDL code is synthesiz-
able

Design Compiler Name of synthesis tool
from the Synopsys company

design constraint A set of constraints set
on a design; outcome on the design syn-
thesis depends widely upon design
constraints

EDA Electronic Design Automation

entity Portion of VHDL code to declare
interface ports of a design

FPGA Field Programmable Gate Array

FPGA Compiler Synopsys's FPGA
Compiler for compilation into FPGA
database

functional block Designs are always par-
titioned according to functional blocks

385

386 GLOSSARY

whereby each block has different func-
tionality that the block has to perform

Hold time The time required for a signal to
be held valid after clock changes

Hold time violation A violation whereby
the hold time is not met

IEEE Institute of Electrical and Electronic
Engineers

instantiate Concept of usage of precom-
piled logic components within a design

Integer A signal type that can have value
range from -(2 31 - 1) to +(2 31 - 1)

Karnaugh Map A method that can be used
to optimize a design

Leonardo Mentor Graphics' synthesis
related tool

memory module Module with internal cir-
cuitry that functions as a memory unit

Mentor Graphics An EDA tool company
that has a wide range of EDA tools

microcontroller An integrated circuit that
has functions of a microprocessor but on a
much smaller scale; internally the micro-
controller also has peripheral modules
that each has its own functionality to
perform

multiple architecture Design with more
than one architecture specified

pipeline An architectural design concept
whereby a design is divided into stages; at
each stage some form of functionality is
performed; the design would seem to
function like a pipeline where inputs are
passed from one stage to another

precompiled l ibrary An existing library
with design components that have been
compiled

schematic capture A concept on which
designs are manually hand-drawn using
some CAD tools

Setup time The time required for a signal
to be held valid before clock changes

Setup time violation A violation whereby
the setup time is not met

signal A VHDL concept which is equiva-
lent to that of "wire" in Verilog

simulation To inject a certain set of input
stimulus and check for output waveform
to assure correct functionality

Std_logic A signal or port type that is
the resolved version of std_ulogic

std_1ogic_1164 A library from IEEE

std_logic_arith A library from IEEE

S t d _ u l o g i c A signal or port type that
can have 9 different values of 1, 0, H, L,
X, U, Z , - andW

stimulus A set of input patterns injected
into a design

structural VHDL A form of VHDL that is
commonly used for netlist purposes

submodule Module within module of a
design

Summit Design Name of an EDA com-
pany that has a wide range of design tools

Synopsys Name of a company whose syn-
thesis tool is most popular in the market
today; it also carries a wide range of other
design tools

synthesis Concept of using EDA tools to
convert HDL code into logic circuit

synthesis flow Design flow that involves
synthesis

synthesizable code HDL code that is writ-
ten for synthesis; not all HDL codes are
synthesizable

synthesizable VHDL A form of VHDL
that is synthesized by synthesis tools into
logic circuits

Test Compiler Synopsys's Test Compiler
for testability synthesis

testbench A wraparound of a design to
enable simulation of the design

VHDL Very High Speed Integrated Circuit
Hardware Description Language or short
for VHSIC HDL

Visual HDL Graphical design tool from
Summit Design

B I B L I O G R A P H Y

Design Ware Developer Guide
Devadas, S., Ghash, A., and Keutzer, K. (1993). Logic Synthesis. New York: McGraw-Hill.
Hennessy, J.L. and Patterson, D.A. (1996). Computer Architecture: A Quantitative Approach. Morgan

Kaufmann Publication.
Kurup, P. and Abbasi, T. (1997). Logic Synthesis Using Synopsys. New York: Kluwer Academic Publication.
Patterson, D.A. and Hennessy, J.L. (1997). Computer Organization & Design: The Hardware/Software

Interface. Morgan Kaufmann Publication.
Synopsys Design Compiler Manual 1998
Xilinx XC4000 Series Design Methodology Using FPGA Compiler Application Note 1994

387

This Page Intentionally Left Blank

I N D E X

ADD, 87
Adder, 43-45

implementation, 189
32-bit, 162-167

AND, 21-22, 213-215
Architectural definition, 88-90
Architecture, 4-7
Area optimization, 192-195
Area report, 201-202, 257-261
Asynchronous/false paths, 155

Balancing, register, 177-183
Balancing logic trees with heavy loading,

189-192
Barrel shifter, 57
Behavioral design structure, 10-17
Block statements, 213-215
Bottoms-up compilation, 226-227
BUFFER port, 53-55

CAD (computer-aided design), 3
Capacitance, command, 197-198
Car traffic controller, 81-86
CASE statements, 32-33,270
Cell report, 203-205,257-261
characterize, submodules, 176-177
Checking a design, 159
CJE, 88
Clock, creating a, 159-160
Clock skew, setting, 160
Coding, 19-20

Combinational logic, 193, 270
Comparator, 32-bit, 201-202
compare_design, 216-219
Compilation

bottoms-up, 226-227
with map_effort high option, 162-167
top-down, 226-227, 315-330

Complex logic gate, 28-29
Component inference, 45--46
Configuration, 4-7
Conventional design, 3
Conversion function, in writing syntheziable

VHDL, 18
Counter, 67-73

synthesis results, 311-314

Declarations, library, 17-18
Decode block, 105-112
Decoder, 34-36

priority versus multiplex, 153-154
Description language, hardware (HDL), 4
Descriptive code, for My Module, 15-

17
Design Compiler
area optimization, 192-195
commands, 195-225
fixing hold-time violations, 195
performance tweaks, 161-192
startup, 157-158
for synthesis, 158-161

Design guidelines, 269-270

389

390 INDEX

Design structure, 4-7
structural, behavioral, and synthesizable, 10-17

DesignWare library, 231-241

EDA (electronic design automation), 4
EDIF (electronic database interchange format), 3,

263, 331-356
Encoder, 36-37

priority, 39-41
Entity, 4-7
Execute block, 121-131

False path, 195
Fanout, 197
Field Programmable Gate Array (FPGA),

253-262
find, 211-212
Finite state machine, FSM Compiler to optimize,

183-189
Flattening, design, 172-176
Flip-flop, 33-34, 152-153

multiplexed flip-flop scan style, 244-246
Floorplanning, 266
Flowcharts, 58-59
forward-annotation, 263-264
FSM Compiler to optimize finite state machine,

183-189,270
Fullchip microcontroller, 132-143

generate syntax, 216
Glue logic, 194, 270
Group critical paths with weight factor, 167-171
group-hdl_block, 212-216
group_path, 167-171
GTECH, 229-230

HDL (hardware description language), 4
Hold timing violation, 148-149

fixing, in Synopsys, 195
tweaks for fixing, 154-155

IF statements, 30-32, 270
Implementation, adder, 189
in_place, 267
Input delays, 160-161
insert_pads, 253
Instantiation, component, 8-10

GTECH, 229-230
Instruction set definition, 87-88
Interface signals, 89-90

decode block, 105-106
execute block, 121-123
precode block, 94-96
register file block, 113-114

Inverter, 190-192

Latch, 29-33
Layouts

floorplanning, 266
forward-annotation, 263-264
optimization, post, 267
wireload models, 264-266

Library
declarations, 17-18
DesignWare, 231-241
link_library, 158, 231,233-235
report, 198-201
std_logic_l 164, 273-303
synthetic_library, 231,233-235

link_library, 158, 231,233-235
LOAD, 88
Logic

balancing, 152-153
combinational, 193,270
duplication, 150-152
flattening of design, 172-176
glue, 194, 270
sequential, 270
trees with heavy loading, balancing, 189-

192
Loopback signal, 53-55,269
loop syntax, 215-216

and next, 217-219

map_effort high option, 162-167
Maximum delay, 196
Memory cell, 42-43
Memory module, 73-80
Microarchitectural tweaks, 150-155
Microcontroller

decode stage, 91
execute stage, 91
instruction set definition, 87-88
interface signals, 89-90
precode stage, 91

Minimum delay, 196
MOVE, 87
MUL, 88
Multicycle paths, 155, 196
Multiplex decoding, 153-154
Multiplexed flip-flop scan style, 244-246
Multiplexer, 38-39
Multiplier, 4-bit, 172-176

Naming convention, 269
NAND, 24-25
Net report, 205-206
next syntax, 217-219
NOP, 88
NOR, 26
NOT, 24

I N D E X ~ 9 1

OR, 22-23
OUT port, 53-55
Output delays, 160-161

Performance tweaks
balancing logic trees with heavy loading,

189-192
characterizing submodules, 176-177
FSM Compiler to optimize finite state machine,

183-189
group_path, 167-171
high-speed implementation for high-level func-

tional modu!e, 189
logical flattening of design, 172-176
map_effort high option, 162-167
register balancing, 177-183

Pipeline definition, 91-92
Pipeline microcontroller, microarchitecture defini-

tion for
decode block, 105-112
execute block, 121-131
fullchip microcontroller, 132-143
functional blocks for, 92-94
precode block, 94-105
register file block, 113-121

Pipeline microcontroller synthesizable design
architectural definition, 88-90
instruction set definition, 87-88
results, 315-330

port_is_pad, 254-255
Precode block, 94-105
Priority decoder, 153-154
Priority encoder, 39-41
PROCESS, 270

READ, 88
Reading a design, 159
Register balancing, 177-183
Register file block, 113-121
replace_fpga, 253,261-262
report_area, 201,257-261
report_cell, 203-205,257-261
report_fpga, 261
report_lib, 198-201
report_net, 205-206
report_timing, 207-211,256-257
RTL code, 15-17

Saving a design, 161
Scan insertion, Test Compiler for, 246-252
Scan style, multiplexed flip-flop, 244-246
Schematic capture, 3
search_path, 158
Sequential logic, 270
Sensitivity list, 269-270

set_disable_timing, 220-225
seLdon't_touch, 198
seLfalse_path, 195
set_fanoutload, 197
set_max_area attribute, 195
setmax_capacitance, 197-198
set_max_delay, 196
set_max_fanout, 197
set_max_transition, 196-197
seLmin__delay, 196
set_multicycle_path, 196
set_pad_type, 253
set_port_is_pad, 253, 254
Setup/hold timing violation, 149-150

tweaks for fixing, 150-154
Setup timing violation, 147-148

tweaks for fixing, 150-154
Shifter, 57-67

code for N-Bit, 235-238
code to instantiate MY_DW_shifter, 239-241
synthesis results, 305-310

Signal, 48-53,270
Simulation, 20
Standard delay format (SDF), 263,357-386
State machine, FSM Compiler to optimize finite,

183-189
std_logic_1164 library, 273-303
std_logic type, 269
Structural code, for My Module, 11-12
Structural design structure, 10-17
SUB, 88
Submodules, characterizing, 176-177
Subtractor, 167-171
symbol_library, 158
Synopsys's Design Compiler, 157

See also Design Compiler
fixing hold-time violations in, 195
link_library, 158
search_path, 158
symbol_library, 158
target_library, 158

Synthesis, 20
commands, 195-225
Design Compiler for, 158-161
FPGA, 253-262
links to layout, 263-267

Synthesizable code
adder, 43-45, 162-167
AND, 22
basic logic components, 21-46
car traffic controller, 82-84
CASE, 32-33
comparator, 201-202
complex logic gate, 28-29
counter, 68-69

3 9 2 INDEX

decode block, 106-109
decoder, 35-36
encoder, 36-37
examples of complex, 57-86
execute block, 123-128
flip-flop, 34
fullchip microcontroller, 132-136
latch, 29-32
memory cell, 42
memory module, 75-77
multiplexer logic, 38-39
NAND, 25
NOR, 26
NOT, 24
OR, 23
precode block, 96-100
priority encoder, 40-41
register file block, 114-118
shifter, 60--61
Tristate Buffer, 27

Synthesizable design structure, 10-17
See also Pipeline microcontroller synthesizable

design
synthetic_library, 231,233-235

target_library, 158
Testability issues

multiplexed flip-flop scan style, 244-246
Test Compiler for scan insertion, 246-

252

Testbench
counter, 69-73
decode block, 109-112
defined, 20
execute block, 128-131
fullchip microcontroller, 136-143
memory module, 77-80
precode block, 101-105
register file block, 118-121
shifter, 61-67
signal and variable, 50-51

Test Compiler for scan insertion, 246-252
Timing, set disable, 220-225
Timing constraints. See Design Compiler
Timing report, 207-211,256-257
Timing violations

asynchronous/false paths, 155
hold, 148-149, 195
multicycle paths, 155
setup, 147-148
setup/hold, 149-150
tweaks for fixing hold, 154-155
tweaks for fixing setup, 150-154

Top-down compilation, 226-227, 315-330
Transition command, 196-197
Tristate buffer, 27

Variable, 47-48, 50-53,270

Wireload models, 264-266

	Front Cover
	VHDL: Coding and Logic Synthesis with Synopsys®
	Copyright Page
	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	Preface
	Acknowledgment
	Trademarks
	Part I: VHDL CODING
	Chapter 1. Introduction
	1.1 Conventional Design—Schematic Capture
	1.2 Hardware Description Language
	1.3 VHDL Design Structure
	1.4 Component Instantiation Within a VHDL Design Structure
	1.5 Structural, Behavioral, and Synthesizable VHDL Design Structure
	1.6 Usage of Library Declarations in VHDL Design Structure

	Chapter 2. VHDL Simulation and Synthesis Flow
	Chapter 3. Synthesizable Code for Basic Logic Components
	3.1 AND Logic
	3.2 OR Logic
	3.3 NOT Logic
	3.4 NAND Logic
	3.5 NOR Logic
	3.6 Tristate Buffer Logic
	3.7 Complex Logic Gate
	3.8 Latch
	3.9 Flip-Flop
	3.10 Decoder
	3.11 Encoder
	3.12 Multiplexer
	3.13 Priority Encoder
	3.14 Memory Cell
	3.15 Adder
	3.16 Component Inference

	Chapter 4. SignaI Versus Variable
	4.1 Variable
	4.2 Signal
	4.3 When to Use Signal and When to Use Variable
	4.4 Usage of Loopback Signal

	Chapter 5. Examples of Complex Synthesizable Code
	5.1 Shifter
	5.2 Counter
	5.3 Memory Module
	5.4 Car Traffic Controller

	Chapter 6. Pipeline Microcontroller Synthesizable Design
	6.1 Instruction Set Definition
	6.2 Architectural Definition
	6.3 Pipeline Definition
	6.4 Microarchitecture Definition for the Pipeline Microcontroller

	Part II: LOGIC SYNTHESIS WITH SYNOPSYS
	Chapter 7. Timing Considerations in Design
	7.1 Setup Timing Violation
	7.2 Hold Timing Violation
	7.3 Setup/Hold Timing Considerations in Synthesis
	7.4 Microarchitectural Tweaks for Fixing Setup Time Violations
	7.5 Microarchitectural Tweaks for Fixing Hold Time Violations
	7.6 Asynchronous/False Paths
	7.7 Multicycle Paths

	Chapter 8. VHDL Synthesis with Timing Constraints
	8.1 Introduction to Design Compiler
	8.2 Using Design Compiler for Synthesis
	8.3 Performance Tweaks
	8.4 Area Optimization in Synthesis Tweaks
	8.5 Fixing Hold-Time Violations in Synopsys
	8.6 Misc Synthesis Commands Generally Used
	8.7 Top-Down and Bottoms-Up Compilation

	Chapter 9. GTECH Instantiation
	Chapter 10. DesignWare Library
	10.1 Creating Your Own DesignWare Library

	Chapter 11. Testability Issues in Synthesis
	11.1 Multiplexed Flip-Flop Scan Style
	11.2 Using Synopsys Test Compiler for Scan Insertion

	Chapter 12. FPGA Synthesis
	Chapter 13. Synthesis Links to Layout
	13.1 Forward-Annotation
	13.2 Wireload Models
	13.3 Floorplanning a Design
	13.4 Post Layout Optimization

	Chapter 14. Design Guideline to Follow for Efficient Synthesis

	Appendix A. (STD_LOGIC_1164 Library)
	Appendix B. (Shifter Synthesis Results)
	Appendix C. (Counter Synthesis Results)
	Appendix D. (Pipeline Microcontroller Synthesis Results—Top-Down Compilation)
	Appendix E. (EDIF File of Synthesized Microcontroller Example from Chapter 6)
	Appendix F. (SDF File from Synthesized Microcontroller Example of Chapter 6)
	Glossary
	Bibliography
	Index

